Intelligent Microbial Heat Regulating Engine
Background and Issues

NAME: COCO
SEX: UNKNOWWN
DATE OF BIRTH: 2013.08.08
FAVORITE FOOD: LB
Background and Issues
Background and Issues

Note: Including organic acid, amino acid, starch sugar, yeast, etc. Not including antibiotic, vitamin, Alcohol, etc.
Background and Issues

50 °C

37°C

Cooling system

So comfortable

Log, or exponential growth, phase
Stationary phase
Death, or logarithmic decline, phase

E. coli growth curve
Background and Issues

1 °C

¥ 1,000,000,000

345,000 kW·h

111,373,056 tons

CO₂

CO₂

¥ 1,000,000,000

CO₂
Background and Issues
Ideas

Extending their living temperature

Making them live in the optimizing density
Ideas

Thermotolerant Mechanism

- Heat shock protein
- Cell membrane
- Transcription factor
- Some special enzyme
- Global regulator
Ideas

Controlling the cell density to reduce metabolic heat

\[Q_{\text{Fermentation}} = Q_{\text{Biology}} + Q_{\text{Mechanism}} - Q_{\text{Evaporation}} - Q_{\text{Sensible heat}} - Q_{\text{Radiation}} \]
Regulation of cell density

T-A systems in *Escherichia coli*

<table>
<thead>
<tr>
<th>Toxin</th>
<th>Antitoxin</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CcdB</td>
<td>CCdA</td>
<td>Found on the F plasmid of Escherichia coli</td>
</tr>
<tr>
<td>HicB</td>
<td>HicA</td>
<td>Found in archaea and bacteria, it is not clear which component is toxin and which is antitoxin.</td>
</tr>
<tr>
<td>Kid</td>
<td>Kis</td>
<td>Stabilises the R1 plasmid and the CcdB/A system.</td>
</tr>
<tr>
<td>MazF</td>
<td>MazE</td>
<td>A system induced by the SOS response to DNA damage in E. coli.</td>
</tr>
<tr>
<td>ParE</td>
<td>ParD</td>
<td>Found in multiple copies in Caulobacter crescentus.</td>
</tr>
</tbody>
</table>

Well-studied and low toxicity
Design and Modeling

- Customized Thermotolerance System
 - Heat Shock Protein
 - RNA Thermometer

- Intelligent Quorum Regulating System
 - Device I (Quorum-sensing)
 - Device II (Oscillating Circuit)
 - Device III (Programmed Cell Death)
Heat Shock Protein

Thermoanaerobacter tengcongensis MB4

<table>
<thead>
<tr>
<th>Gene</th>
<th>classification</th>
<th>Property</th>
<th>Gene</th>
<th>classification</th>
<th>Property</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>GroEL</td>
<td>HSP60</td>
<td></td>
<td>FliA</td>
<td></td>
<td>σ factor</td>
<td>Heat-induced Spore</td>
</tr>
<tr>
<td>GroES</td>
<td>HSP10</td>
<td>Assist and correct unfolded and non-native</td>
<td>RpoD</td>
<td></td>
<td>σ factor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>protein</td>
<td>RpoE1</td>
<td>σ factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DnaK</td>
<td>HSP70</td>
<td></td>
<td>RpoE2</td>
<td>σ factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DnaJ</td>
<td>HSP40</td>
<td></td>
<td>RpoE3</td>
<td>σ factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GrpE</td>
<td>HSP</td>
<td></td>
<td>RpoE4</td>
<td>σ factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ThiF</td>
<td>ubiquitin</td>
<td></td>
<td>RpoE5</td>
<td>σ factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTE</td>
<td>ubiquitin</td>
<td>Mark Decomposed protein</td>
<td>RpoE6</td>
<td>σ factor</td>
<td></td>
<td>Be activated under specific</td>
</tr>
<tr>
<td>LytS</td>
<td>HSP90</td>
<td>protease</td>
<td>RpoE7</td>
<td>σ factor</td>
<td></td>
<td>conditions</td>
</tr>
<tr>
<td>LbpA</td>
<td>HSP20</td>
<td>Protein digest</td>
<td></td>
<td></td>
<td></td>
<td>Cell envelope</td>
</tr>
</tbody>
</table>

(pdslab.biochem.iisc.ernet.in/hspir/chaperone.php)
The GroES and IbpA confer E. coli much better heat-resistance at 40°C.
The GroEL and ThiF confer E. coli much better heat-resistance at 43°C.
The DnaK and IbpA confer E. coli much better heat-resistance at 46°C.
We found that overexpressing a protein may affect the growth of the host to a certain degree.
Different strength promoters control different expression level of different heat shock proteins (HSPs) to achieve the goal of Hierarchy Heat-resistant.
Design and Modeling

- Customized Thermo-tolerance System
 - Heat Shock Protein
 - RNA Thermometer

- Intelligent Quorum Regulating System
 - Device I (Quorum-sensing)
 - Device II (Oscillating Circuit)
 - Device III (Programmed Cell Death)
Design and Modeling

Intelligent Quorum Regulating System

Device I (Quorum-sensing)
Device I (Quorum-sensing)
Model

- N species react through M reaction channels.
- $X_i(t)$ is the number of molecules of species i, in the system at time t.

Algorithm

- Determine probability that, starting at time t, reaction μ, R_μ, will be the next reaction to occur in the interval $[t+\tau, t+\tau+d\tau]$
- Execute reaction μ and propagate time.
Stochastic simulation of protein degradation

Design and Modeling

![Graph showing stochastic simulation of protein degradation.](image.png)
Stochastic simulation of production and degradation

Stationary Distribution

Number of Molecules
Design and Modeling

Intelligent Quorum Regulating System

--- Device II (Oscillating Circuit)

Device I

TetR → TetR

CI → CI

tetR → CI

cl → lacI

R0011 B0034 C0040 B0010 B0012 R0040 B0034 C0051 B0010 B0012 R0051 B0034 C0012 B0010 B0012

LacI
Device II (Oscillating circuit)
Device I

Device II

Intelligent Quorum Regulating System

----Device III (Program Cell Death)

Actually I prefer MazE....
Device III (Programmed Cell Death)
Design and Modeling

Intelligent Quorum Regulating System

Device I

Device II

Device III

Result: Device III PCD

Graph showing OD600 over time for different conditions.
Intelligent Quorum Regulating System

Design and Modeling

Device I

Device II

Device III

Density of E. coli

Time
Summary

<table>
<thead>
<tr>
<th>Tube</th>
<th>Part</th>
<th>Plasmid Backbone</th>
<th>Resistance Status</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BBa_K1117001</td>
<td>pSB1C3</td>
<td>C</td>
<td>Accepted Sending Plasmid Backbone</td>
</tr>
<tr>
<td>2</td>
<td>BBa_K1117002</td>
<td>pSB1C3</td>
<td>C</td>
<td>Accepted Sending Plasmid Backbone</td>
</tr>
<tr>
<td>3</td>
<td>BBa_K1117003</td>
<td>pSB1C3</td>
<td>C</td>
<td>Accepted Sending Plasmid Backbone</td>
</tr>
<tr>
<td>4</td>
<td>BBa_K1117004</td>
<td>pSB1C3</td>
<td>C</td>
<td>Accepted Sending Plasmid Backbone</td>
</tr>
<tr>
<td>5</td>
<td>BBa_K1117005</td>
<td>pSB1C3</td>
<td>C</td>
<td>Accepted Sending Plasmid Backbone</td>
</tr>
<tr>
<td>6</td>
<td>BBa_K1117006</td>
<td>pSB1C3</td>
<td>C</td>
<td>Accepted Sending Plasmid Backbone</td>
</tr>
<tr>
<td>7</td>
<td>BBa_K1117007</td>
<td>pSB1C3</td>
<td>C</td>
<td>Accepted Sending Plasmid Backbone</td>
</tr>
<tr>
<td>8</td>
<td>BBa_K1117008</td>
<td>pSB1C3</td>
<td>C</td>
<td>Accepted Sending Plasmid Backbone</td>
</tr>
<tr>
<td>9</td>
<td>BBa_K1117009</td>
<td>pSB1C3</td>
<td>C</td>
<td>Accepted Sending Plasmid Backbone</td>
</tr>
<tr>
<td>10</td>
<td>BBa_K1117010</td>
<td>pSB1C3</td>
<td>C</td>
<td>Accepted Sending Plasmid Backbone</td>
</tr>
<tr>
<td>11</td>
<td>BBa_K1117011</td>
<td>pSB1K3</td>
<td>K</td>
<td>Requires Exception(U) Sending Plasmid Backbone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>we have no time to transfer the part to pSB1C3, but we want to sending this part to iGEM.</td>
</tr>
<tr>
<td>12</td>
<td>BBa_K1117012</td>
<td>pSB1K3</td>
<td>K</td>
<td>Requires Exception(U) Sending Plasmid Backbone</td>
</tr>
</tbody>
</table>
Summary

Advantages

Reducing energy consumption

Improving production efficiency

I’m Here for one green earth!
With the help of HSP, the enzyme can catalyze efficiently during normal cell growth at a higher temperature.
Future Plan

Intelligent variable frequency oscillator
Human Practice

- Primary School
- High School
- University
- Enterprise

Kindergarten
Future Plan

Genetic Engineering & Transformation

Flask Small-scale Pilot Production

Fermentation Small-scale test

Mass product

Pilot Large-scale test
Cooperation

TJU & BIT-China

GC Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection volume</td>
<td>1 μL</td>
</tr>
<tr>
<td>Inlet heater temperature</td>
<td>250°C</td>
</tr>
<tr>
<td>Inlet pressure</td>
<td>7.07 psi</td>
</tr>
<tr>
<td>Total inlet flow</td>
<td>0.5 mL/min</td>
</tr>
<tr>
<td>Septum purge flow mode</td>
<td>Standard</td>
</tr>
<tr>
<td>Inlet Mode</td>
<td>Splitless</td>
</tr>
<tr>
<td>Column</td>
<td>Agilent 19091S-433: 325°C: 30 m x 250 μm x 0.25μm</td>
</tr>
<tr>
<td>Column flow rate</td>
<td>1 mL/min</td>
</tr>
<tr>
<td>Column Pressure</td>
<td>7.07 psi</td>
</tr>
<tr>
<td>Average velocity</td>
<td>36.262 cm/sec</td>
</tr>
<tr>
<td>Holdup Time</td>
<td>1.3789</td>
</tr>
<tr>
<td>Initial oven temperature</td>
<td>40°C for 1 min</td>
</tr>
<tr>
<td>Ramp 1</td>
<td>Heat 15°C/min until 100°C</td>
</tr>
<tr>
<td>Ramp 2</td>
<td>Heat 25°C/min until 320°C, hold for two min</td>
</tr>
</tbody>
</table>
Acknowledgment

Instructors

Prof. Chun Li

Prof. Shuyuan Guo
Acknowledgment

Advisors:
Zhe Li
Yueqin Liu
Xiangying Sun
Haiyang Jia

Students:
Nisi Jiang
Baiyang Liu
Huan Sun
Yunqian Wang
Wenhong Zu
Xiaoli Gu
Yue Wang
Shanqin Liang
LiChao Zhu
Bangjie Liao
Jiexin Zhang
Yinan Luan
Tianhui Zhang
Han Yue
Thanks for your attention!