COLISWEEPER

the world’s first bacterial minesweeper game

iGEM ETH Zurich 2013
The Computer Game Minesweeper
From Minesweeper to Colisweeper
Bio-Game Rules

Pipette a solution – player move

Cursor – player move
Bio-Game Rules

Pipette Playing Solution

No mine – empty
Bio-Game Rules

One mine

Pipette Playing Solution
Bio-Game Rules

Two mines

Pipette Playing Solution
Bio-Game Rules

Pipette Playing Solution

Mine

51
Bio-Game Rules

Detonated Mine

Pipette Playing Solution
Bio-Game Rules

Pipette Playing Solution

Detonated Mine

GAME OVER

Detonated Mine

GAME OVER
Bio-Game Rules

Flagging

Pipette Flagging Solution

1

2

Flagging
Lux Signalling System

LuxR

P_{LuxL}

Inactive
Lux Signalling System

luxR

PLuxL

PLuxR

luxI

LuxR

Inactive

LuxI
Lux Signalling System

The Lux signalling system involves the interaction of LuxR and LuxI proteins. LuxR activates the expression of LuxI, which produces AHL (N-acylhomoserine lactone), a quorum-sensing molecule. LuxI then inhibits the expression of LuxR, creating a feedback loop that regulates the system's activity. The diagram illustrates this regulatory mechanism with arrows indicating the activation and inhibition steps.
Overview of Biological Circuit

Mine cell / Sender

\[P_{\text{const}} \rightarrow \text{luxI} \]

\[P_{\text{const}} \rightarrow \text{nagZ} \]
Overview of Biological Circuit

Mine cell / Sender

\[P_{\text{const}} \quad \text{luxI} \quad P_{\text{const}} \quad \text{nagZ} \]

AHL
Overview of Biological Circuit

Mine cell / Sender

Non Mine cell / Receiver

AHL

\[P_{\text{const}} \]

\[P_{\text{const}} \]

\[\text{nagZ} \]

\[P_{\text{luxl}} \]

\[P_{\text{luxR}} \]

\[P_{\text{const}} \]

\[\text{phoA} \]

\[P_{\text{LuxR (high sensitivity)}} \]

\[\text{gusA} \]

\[P_{\text{LuxR (low sensitivity)}} \]

\[\text{aes} \]
Biological Game – 0 Mines nearby

Non Mine

P_{\text{const}} \rightarrow \underline{\text{phoA}}

P_{\text{LuxR (high)}} \rightarrow \underline{\text{gusA}}

P_{\text{LuxR (low)}} \rightarrow \underline{\text{aes}}

P_{\text{const}} \rightarrow \underline{\text{luxR}}
Biological Game – 0 Mines nearby

- **phoA**
- **LuxR**
- **gusA**
- **aes**
- **P**

Diagram showing the relationship between the genes and their expressions.
Biological Game – 0 Mines nearby

Non Mine

\[\text{phoA} \]

\[\text{luxR} \]

\[\text{gusA} \]

\[\text{aes} \]

\[\text{P}_{\text{const}} \]

\[\text{P}_{\text{LuxR (high)}} \]

\[\text{P}_{\text{LuxR (low)}} \]

p-Nitrophenoyl-Phosphate

\[\text{PhoA} \]

\[\text{Non Mine} \]
Biological Game – 1 Mine nearby

- \(P_{\text{const}} \) \(luxI \)
- \(P_{\text{const}} \) \(nagZ \)
- Mine
- AHL
- \(P_{\text{const}} \) \(luxR \)
- \(P_{\text{LuxR} \text{ (high)}} \) \(gusA \)
- \(P_{\text{LuxR} \text{ (low)}} \) \(aes \)
- Non Mine
- \(P_{\text{const}} \) \(phoA \)
Biological Game – 1 Mine nearby

- **P**\(_{\text{const}}\) **luxI**
- **P**\(_{\text{const}}\) **nagZ**
- **P**\(_{\text{const}}\) **luxR**
- **P**\(_{\text{LuxR (high)}}\) **phoA**
- **P**\(_{\text{LuxR (low)}}\) **gusA**
- **P**\(_{\text{const}}\) **aes**

Mine

Salmon-Glucouronide

GusA

Non Mine
Biological Game – 2 Mines nearby

- **P\text{const}**
- **luxI**
- **nagZ**

2 Mines

- **AHL**

Non Mine

- **P\text{const}**
- **phoA**
- **gusA**

- **P\text{const}**
- **LuxR (high)**
- **aes**

- **P\text{LuxR (low)}**

ICEM
ETH Zürich
Biological Game – 2 Mines nearby

- **Magenta-Butyrate**
- **Non Mine**

- **luxI**
- **nagZ**
- **2 Mines**
- **AHL**
- **P_{const}**

- **phoA**
- **gusA**
- **aes**

- **P_{const}**
- **P_{LuxR (high)}**
- **P_{LuxR (low)}**

- **Magenta-Butyrate**
- **Aes**
Biological Game – Mine

Mine

\[P_{\text{const}} \]

\[\text{luxI} \]

\[P_{\text{const}} \]

\[\text{nagZ} \]
Biological Game – Mine

Mine

P_{\text{const}} \rightarrow \text{luxI}

P_{\text{const}} \rightarrow \text{nagZ}

X-GlucNAc

\text{NagZ}
Biological Game – Flagging

Mine/Non mines

Chromosomal

\(lacZ \)
Biological Game – Flagging

Mine/Non mines

Chromosomal

Green-Galactopyranoside

LacZ

Flag
Information Processing
Information Processing

Signal Origin

Sender/Mine cell

AHL

P \text{const}

\text{luxI}
Information Processing

Signal Origin

Sender/Mine cell

AHL

P\text{const}

luxI

Signal Gradient

Non mine

0

Mine

1

2

76
Information Processing

Sender/Mine cell

Signal Origin

Signal Gradient

Signal Processing

P_{const}

phoA

P_{LuxR\ (high)}

gusA

P_{LuxR\ (low)}
aes
Results

- Gradient establishment
- \(P_{\text{LuxR}} \) sensitivities
- Reporter system: Hydrolases
Gradient Establishment

2D Spatiotemporal model

- 1 PDE + 5 ODEs
- 3 domains
- 23 parameters
- Finite element method with Neumann boundary condition
- Stationary solution

Parameters: Basu et al., A synthetic multicellular system for programmed pattern formation. Nature 2005
Gradient Establishment

Parameters:

- Basu et al.,
- *A synthetic multicellular system for programmed pattern formation.*
 - Nature 2005

2D Spatiotemporal model

- 1 PDE + 5 ODEs
- 3 domains
- 23 parameters
- Finite element method with Neumann boundary condition
- Stationary solution
Gradient Establishment

AHL concentration [μM]

- **EC$_{50}$**
- **Dist. from center of mine [cm]**
- **Time [h]**

- **0** to **3**
- **0** to **5**
- **0** to **20**

- **0.0036** to **56.6214**
Gradient Establishment

![AHL concentration vs. distance and time graph]

- **AHL concentration [μM]**
- **Time [h]**
- **Dist. from center of mine [cm]**

- **EC₅₀**

Values:
- 56.6214
- 14.843
- 2.6417
- 0.2319
- 0.0036
Gradient Establishment

AHL concentration [\mu M]

Dist. from center of mine [cm]

0 0.5 1 1.5 2 2.5 3

Time [h]

0 5 10 15 20

EC_{50}

AHL Concentration at Receiver Cells at 1.5 cm

AHL concentration [\mu M]

0 0.5 1 1.5

Time [h]

0 5 10 15 20

ETH Zürich
Gradient Establishment

AHL concentration $[\mu M]$

Dist. from center of mine [cm]

Time [h]

EC_{50}

AHL Concentration at Receiver Cells at 1.5 cm

AHL concentration $[\mu M]$

Time [h]

0 Mines
Gradient Establishment

![AHL concentration graph](image1)

![AHL Concentration at Receiver Cells at 1.5 cm](image2)
Gradient Establishment

AHL concentration [µM]

Dist. from center of mine [cm]

Time [h]

AHL Concentration at Receiver Cells at 1.5 cm

AHL concentration [µM]

Time [h]

EC_{50}
Gradient Establishment

AHL concentration [μM]

Dist. from center of mine [cm]

Time [h]

0 5 10 15 20

EC\textsubscript{50}

56.6214
14.843
2.6417
0.2319
0.0036

AHL Concentration at Receiver Cells at 1.5 cm

Time [h]

0 5 10 15 20

3 Mines
2 Mines
1 Mine
0 Mines
Gradient Establishment

AHL concentration [µM]

Dist. from center of mine [cm]

Time [h]

AHL Concentration at Receiver Cells at 1.5 cm

Time [h]

EC$_{50}$
Gradient Establishment

AHL concentration [μM]

- **EC$_{50}$**

AHL Concentration at Receiver Cells at 1.5 cm

- 3 Mines
- 2 Mines
- 1 Mine
- 0 Mines

Dist. from center of mine [cm]

Time [h]

AHL concentration [μM]

0 0.5 1 1.5 2 2.5 3

0 5 10 15 20

0 0.5 1 1.5

56.6214 14.843 2.6417 0.2319 0.0036
Gradient Establishment

AHL Concentration at Receiver Cells at 1.5 cm

Dist. from center of mine [cm]

Time [h]

- **EC$_{50}$**

AHL concentration [μM]

- 56.6214
- 14.843
- 2.6417
- 0.2319
- 0.0036

Time [h]

- 0
- 5
- 10
- 15
- 20

0 Mines

1 Mine

2 Mines

3 Mines
Signalling with P_{LuxR}

MODEL

EXPERIMENT

Time: 5.5 h

P_{Lac} P_{LuxR}

luxR \rightarrow gfp

AHL

P_{const}

luxI

GFP Concentration (mM)

0.3
0.25
0.2
0.15
0.1
0.05
0

1.5 cm
Signalling with P_{LuxR}

MODEL

EXPERIMENT

Time: 6.5 h

P_{Lac} P_{LuxR}

luxR gfp

AHL

P_{const}

luxl

GFP Concentration (mM)

0 0.05 0.1 0.15 0.2 0.25 0.3

1.5 cm
Signalling with P_{LuxR}

MODEL

- $P_{Lac} \rightarrow luxR$
- $P_{LuxR} \rightarrow gfp$
- $P_{const} \rightarrow luxI$
- AHL

EXPERIMENT

- GFP Concentration (mM)
 - 0.3
 - 0.25
 - 0.2
 - 0.15
 - 0.1
 - 0.05
 - 0

- 1.5 cm

Time: 11 h
Signalling with P_{LuxR}
Signal Processing: P_{LuxR} Promoter

P_{LuxR} (high sensitivity) → reporter

[Diagram showing a curve relating Reporter concentration to [AHL] concentration]
Signal Processing: P_{LuxR} Promoter

P_{LuxR} (high sensitivity)

P_{LuxR} (low sensitivity)
P_{LuxR} Promoter Mutagenesis

Site-saturation mutagenesis

BBa_J09855 and BBa_E0840

$L.Caetano et al.$,
A Mutational Analysis Defines Vibrio fischeri LuxR Binding Sites,
Journal of Bacteriology 2008
P_{LuxR} Promoter Mutagenesis

Site-saturation mutagenesis

BBA_J09855 and BBA_E0840

Positive selection:
high [AHL]

Negative selection:
no AHL

**R0062 P_{LuxR}

ACCTGTAGGATCGTACAGGTWT
ACNNNTAGGATCGTANNNGT Library

P_{LuxR} Promoter Mutagenesis

Site-saturation mutagenesis

BBA_J09855 and BBA_E0840

- **Positive selection:** high [AHL]
- **Negative selection:** no AHL

Characterization by flow cytometry

<table>
<thead>
<tr>
<th>WT Library</th>
<th>G1 Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCTGTAGGATCGTACAGGT</td>
<td>G1</td>
</tr>
<tr>
<td>ACNNNTAGGATCGTANNNGT</td>
<td>G1</td>
</tr>
<tr>
<td>ACCAGTAGGATCGTAGGGT</td>
<td>G1</td>
</tr>
</tbody>
</table>

Analysis: P_{LuxR} Promoter G1

P_{LuxR} G1

BBa_K1216007

P_{Lac} P_{LuxR}

luxR gfp

AHL

P_{const}

luxl
Analysis: P_{LuxR} Promoter G1

Model

- P_{LuxR} G1
- P_{Lac}
- $luxR$ → gfp
- AHL
- P_{const}
- $luxI$

BBa_K1216007

GFP expression (mM)

0.06

0.05

0.04

0.03

0.02

0.01

2.0413×10^{-3}
Analysis: P_{LuxR} Promoter G1

Experiment

Model

P_{Lac} P_{LuxR} G1

BBa_K1216007

luxR gfp

AHL

P_{const}

luxI

GFP expression (mM)
Enzyme-Substrate Reactions

BBa_K1216001
PhoA NagZ LacZ

BBa_K1216000
LacZ GusA Aes

BBa_K1216002

BBa_K1216003
Enzyme-Substrate Reactions

BBa_K1216000
BBa_K1216001
BBa_K1216002
BBa_K1216003

PhoA NagZ LacZ LacZ GusA Aes

Magenta-butyrate
Salmon-Gluc
X-GluNAc
pNPP

Aes GusA NagZ PhoA neg.
Enzyme-Substrate Reactions

Mixed cultures with mixed substrates:
1: PhoA
2: PhoA + GusA
3: PhoA + GusA + Aes

Magenta-butyrate
Salmon-Gluc
X-GluNAc
pNPP

BBa_K1216001
BBa_K1216000
BBa_K1216002
BBa_K1216003

PhoA NagZ LacZ LacZ GusA Aes

Aes GusA NagZ PhoA neg.

The images show various tubes containing different substrates and enzymes, illustrating the reactions and color changes resulting from the enzymatic activities.
Human Practice
Human Practice
Human Practice

Access

Remote Control

Global players

Gamification

Synthetic Biology I
Lab Course

ETH Zürich
Achievements

Proof of Principle with GFP wild type P_{LuxR} promoter
Achievements

Proof of Principle with GFP wild type P_{LuxR} promoter

Predictive spatio-temporal model of the system
Achievements

Proof of Principle with GFP wild type P_{LuxR} promoter

Predictive spatio-temporal model of the system

P_{LuxR} promoter mutagenesis
New biobrick: P_{LuxR} promoter (low sensitivity) BBa_K1216007
Achievements

Proof of Principle with GFP wild type P_{LuxR} promoter

Predictive spatio-temporal model of the system

P_{LuxR} promoter mutagenesis
New biobrick: P_{LuxR} promoter (low sensitivity) BBa_K1216007

Characterization of a reporter system with five different hydrolases
New biobricks: Aes BBa_K1216002, Aes-His BBa_K1216006, NagZ BBa_K1216003
Improved biobricks: PhoA-His BBa_K1216005, GusA-His BBa_K1216004
Achievements

Proof of Principle with GFP wild type P_{LuxR} promoter

Predictive spatio-temporal model of the system

P_{LuxR} promoter mutagenesis
New biobrick: P_{LuxR} promoter (low sensitivity) BBa_K1216007

Characterization of a reporter system with five different hydrolases
New biobricks: Aes BBa_K1216002, Aes-His BBa_K1216006, NagZ BBa_K1216003
Improved biobricks: PhoA-His BBa_K1216005, GusA-His BBa_K1216004

Human Practice
Colisweeper as novel, fun and educational tool
Acknowledgments

Prof. Dr. Sven Panke
Prof. Dr. Yaakov Benenson
Prof. Dr. Jörg Stelling

Markus Jeschek
Gaspar Morgado
Sabine Österle
Laura Prochazka
Benjamin Häfliger
Bartolomeo Angelici
Lukas Widmer

Dr. Johannes Härle
Andreas Bosshart
Anke Gehringer
Niels Bürckert
Verena Jäggin
Thomas Horn
Urs Senn
Sponsors

KontaktGruppe für Forschungsfragen
Contact Group for Research Matters

Novartis

BASF
The Chemical Company

ETH
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Merck Serono
Living science, transforming lives

Roche

IGEM

ETH Zürich
Thank you for your attention!