Intrinsic Factor-y: An alternative treatment to Pernicious Anemia
Intrinsic Factor-y: An alternative treatment to Pernicious Anemia
Intrinsic Factor-y: An alternative treatment to Pernicious Anemia
Pernicious Anemia

Type of Megaloblastic Anemia

Caused by B12 deficiency
Malabsorption due to lack of intrinsic factor (atrophic body gastritis)

Symptoms mainly on three systems
Blood, gastro-intestinal tract and nervous system

Frequency:
1 in 681 people for Turkey*
1 in 680 people for USA*

Treatments
Life long injection B12

*Based on data from http://www.cureresearch.com/p/pernicious_anemia/stats-country.htm
B12 (Cobalamin)

- Water soluble vitamin
- Essential vitamin (must be taken by diet)
- Function as co factor in three enzyme process:
 - Conversion of homocysteine to Met
 - Conversion of Methylmalonic acid to succinyl coenzyme A
 - Conversion of 5-methyltetrahydrofolate to tetrahydrofolate

! DNA Synthesis
! Red blood cell production
Absorption of B12

- Three important protein in absorption mechanism:
 - Haptocorrin (R-protein)
 - Intrinsic Factor*
 - Transcobalamin-II
In case of Pernicious Anemia
autoantibodies to parietal cells and intrinsic factor
Autoreactivity of T cells
Loss of parietal cell
No IF production
Project

Production and secretion of IF in ileum.

Why?
Long-standing treatment to Pernicious anemia disease.
Module I: Secretion of GIF

Signal Peptidase

Type II Secretion Machinery

OmpA+GIF

Extracellular Matrix

Cytoplasm
The part

- Western Blot analysis from culture supernatant
Figure 1: Agarose gel results of parts double cut (Lane right to left: Empty, OmpA-GIF+B0015, OmpA-GIF, B0034, Marker)
Module 2: Purification and Characterization of Recombinant GIF

- Clon the gif gene downstream of GST-tag
- Analyzing B12 binding of recombinant GIF protein
Results

Figure 2: Agarose gel result of BamHI and XhoI double cut of plasmid isolated from colonies which are transformed with ligation product
Module 3: pH dependent expression of GIF

nhaA promoter – can be regulated by pH and nhaR protein

- In the intestine (pH is higher), nhaA promoter senses the pH change and activates gene expression.
The part

- Analyze expressed GIF protein with increasing pH by Western Blot
Results

Figure 3: Agarose gel results of DNA isolation from DH5α strain
Results

Figure 4: Agarose gel results of amplification nhaA promoter from DH5α strain via gradient PCR
Results

Figure 5: PCR amplification of nhaA promoter at 59°C annealing temperature
Module 4: Kill Switch

- Toxin-Antitoxin Module: MazE-MazF
The part
Modelling

Equations For Transcription

\[
\frac{d}{dt}[\text{MazE mRNA}] = N \cdot P \cdot \frac{1}{1 + \left(\frac{[\text{Glucose}]}{K_{\text{Glucose}}} \right) \cdot n_{\text{Glucose}}} - a_{\text{mRNA}}[\text{MazE mRNA}]
\]

\[
\frac{d}{dt}[\text{MazF mRNA}] = N \cdot P \cdot \frac{1}{1 + \left(\frac{[AI_2]}{K_{AI_2}} \right) \cdot n_{AI_2}} - a_{\text{mRNA}}[\text{MazF mRNA}]
\]

Equations for Translation

\[
\frac{d}{dt}[\text{MazE}] = t_{\text{mazE}}[\text{MazE mRNA}] - a_{\text{mazE}}[\text{MazE}]
\]

\[
\frac{d}{dt}[\text{MazF}] = t_{\text{mazF}}[\text{MazF mRNA}] - a_{\text{mazF}}[\text{MazF}]
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Plasmid copy number</td>
</tr>
<tr>
<td>P</td>
<td>Promoter Strength</td>
</tr>
<tr>
<td>k_d</td>
<td>Degradation Rate</td>
</tr>
<tr>
<td>K_a</td>
<td>Dissociation (Equilibrium) Constant</td>
</tr>
<tr>
<td>n_h</td>
<td>Hill Coefficient</td>
</tr>
<tr>
<td>t_s</td>
<td>Translation Rate</td>
</tr>
</tbody>
</table>
Results

Figure 6: EcoRI cut of first ligation reaction products
Problems in Project

- Implementation
 - Milk fat capsules
- Plasmid curing in small intestine
 - Selective pressure with hox-sox genes (BBa_K817015)
- Plasmid instability
 - Resolvase (BBa_K817018)
Future Plans

- Complete experiments and validation of prototype
- Mouse experiment (Gif^tm1(KOMP)Vlcg)
Human Practice

- Our Website
 - http://igem.itu.edu.tr/
- Social Media
 - Facebook
 - Twitter
 - https://twitter.com/ituigem
• Interview with people

-What is iGEM?

* What is synthetic biology?
• Interview with professional
 • A talk with Dr. Aslıgül Kendirci (Drug Development Director of Roche and also PDGA Country Head Turkey, Middle East and North Africa)

• Interview with one of the patient suffering from pernicious anemia

For more information: http://igem.itu.edu.tr/humanpractise.php
• Publicize iGEM and Synthetic Biology in our university, Istanbul and Turkey.
 • Article of ITU team in Science and Future Journal*

• Article of ITU team in ITU24 (University newspaper)**

Future Plans

- Cover a team song
- Continue to Publicize iGEM
Acknowledgment

Sponsors

For advising
Assoc. Prof. Dr. Fatma Neşe Kök
Prof. Dr. Ayten Yazgan Karataş
Members of Karatas Lab.
Murat Kemal Avcı
Büşra Öztürk
Betim Karahoda
Bilal Tetik
Members of ETT Lab.
Aslı Kirectepe
Members of GD Lab.
Tugba Kızılboğa
And all MOBGAM folks.
THANK YOU FOR LISTENING
Dr. Öykü Irigüll Sönmez