Thank you for your attention

Supporters:
Prof. Dr. Jörg Simon
Prof. Dr. Heribert Warzecha
Prof. Dr. Harald Kolmar
Prof. Dr. Katja Schmitz
Prof. Dr. Kay Hamacher
Prof. Dr. Gerhard Thiel
PD Dr. Tobias Meckel
Henning Pennekamp
Florian Schumann
Max Polzin

Sponsors:

iGEM 2013 TU Darmstadt

Problem Solution Detection
iGEM 2013 TU Darmstadt

Problem

Solution

Detection
Problem: mycotoxins

- produced by mould fungi
- 25% of the cereals worldwide are contaminated with mycotoxins
- very toxic products: approx 10 μg/kg chronic dosage
Effects of mycotoxins

- hepatotoxic
- hemorrhagic
- carcinogenic
- causing neural tube defects

Aflatoxin B1

Fumonisin B1
Mycotoxin detection

- established methods: ELISA and HPLC-MS
- expensive equipment
- time consuming
- need for trained personnel
Our Vision
Animation
Results mKate

- Fluorescence under UV light
- Excitation spectrum (max. at 579 nm)
Results LssM Orange

- Fluorescence under UV light
- Excitation spectrum (max. at 415 and 453 nm)
Result: toxicity

Growth curve
Fluorometer

- no: high voltage, laser, optical filters and amplifier
- needs high priced software
Fluorometer to go...

- cost: 35 Euro
- easy to use, small and lightweight
- can be powered via smartphone, normal 9V battery or solar energy
- open source
The detection app

- free available on google play

- communication via Bluetooth or USB

- intuitive and simple handling
The detection app
Biosafety

• safe use of the handheld outside the lab
• self containment in case of spill
• no special training before use
• working even in case of human error
Biocontainment: A light-induced kill switch (LIKS)

- production of PezT toxin in present of blue light
- activated by FRET measurement or spill
- effective within minutes
Human practice

1. survey: opinion about different aspects of biotechnology in everyday life

2. survey: validation of the acceptance towards our detection system

201 people participated:
55% online
45% interviewed in person
Statistic analysis

- Biotechnology in food products has a negative reputation
- More acceptance for pharmaceutical products and fundamental research

![Biotechnology in relation to various products](image)

- Positive attitude towards biotechnology for quality assurance

![Genetic engineering for quality assurance](image)
Statistic analysis

Would you buy food, whose quality was tested with the help of GMO’s?

- Yes 89%
- No 11%

Risks and benefits of biotechnology are perceived as balanced.

Strongest concerns:

- Risk of accidental release into environment,
- Unforeseeable consequences for health and environment
Take home...

- 3 Bio Bricks submitted
- Modelling
 - statistical data
 - LssM Orange structure
- Safety
- Android App
- Fluorometer to go
- Human Practice
Thank you for your attention

Supporters:
Prof. Dr. Jörg Simon
Prof. Dr. Heribert Warzecha
Prof. Dr. Harald Kolmar
Prof. Dr. Katja Schmitz
Prof. Dr. Kay Hamacher
Prof. Dr. Gerhard Thiel
PD Dr. Tobias Meckel
Henning Pennekamp
Florian Schumann
Max Polzin

Sponsors:
High sensitivity

An optical sensing approach based on light emitting diodes

Radovan Stojanovic¹ and Dejan Karadagić²
¹Faculty of Electrical Engineering, University of Montenegro, Montenegro
²School of Biological Sciences, University of Liverpool, Liverpool, L69, 7ZB, UK

An Inexpensive LED-Based Fluorometer Used to Study a Hairpin-Based DNA Nanomachine

Hanwen Yan
Led sensing

An optical sensing approach based on light emitting diodes

Radovan Stojanovic\(^1\) and Dejan Karadaglic\(^2\)

\(^1\)Faculty of Electrical Engineering, University of Montenegro, Montenegro
\(^2\) School of Biological Sciences, University of Liverpool, Liverpool, L69 7ZB, UK

![Diagrams](image-url)
LED are spectral-selective

Sun photometer with light-emitting diodes as spectrally selective detectors

Forrest M. Mims III

The author is with Science Probe, Inc., 433 Twin Oak Road, Seguin, Texas 78155.
Received 21 February 1992.
0003-6935/92/336965-03$05.00/0.
© 1992 Optical Society of America.

Light-emitting diodes (LED’s) can function as light detectors with a spectral bandpass similar to the diode’s spectral emission band,¹ typically 25–35 nm at the half-maximum points. This means that LED’s can serve as detectors in miniature sun photometers that measure precipitable water and atmospheric turbidity at wavelengths from 555 to 940 nm.
LSSmOrange/mKate

A

Fluorescence (a.u.)

Wavelength (nm)

0 20 40 60 80 100

400 500 600 700 800

LSSmOrange
mKate2

B

Fluorescence (a.u.)

Wavelength (nm)

500 600 700

Fluorescence max. at 572 nm
Excitation at 440 nm

C

FRET

caspase-3

Fluorescence max. at 572 nm
Excitation at 440 nm
Back up
Back up