PCR Sewing

You will need the following ingredients for the Sewing PCR mix:

	50 Out
Phusion polymerase	0.5ul
ddH_2O	27.5ul (or enough to 50ul total)
5x Phusion buffer	10.0ul
DMSO (optional)	1.0ul
dNTPs	1.0ul
Fragment #2	5.0ul
Fragment #1	5.0ul

- 1. Always start a PCR mix by writing the recipe above in your notebook, making sure to write specific names for the fragments.
- 2. Locate all of the ingredients except for the polymerase and **place them on ice** to let them thaw.
- 3. If you are doing multiple PCR's, prepare a Master Mix by adding the common ingredients for all reactions to one pot. Add the polymerase LAST. For example, if I were doing a PCR on six different DNA fragments, my notebook might look like this:

		Master Mix
Fragment #1	5.0ul	
Fragment #2	5.0ul	
dNTPs	1.0ul)	6.0ul
DMSO (optional)	1.0ul	6.0ul
5x Phusion buffer	10.0ul > X6	60.0ul
ddH_2O	0.5ul	3.0ul
Phusion polymerase	27.5ul	165.0ul
Total Volume	50.0ul	240.0ul

- 4. Aliquot the **Master Mix** into each PCR tube.
- 5. Add the remaining ingredients not included in the Master Mix.
- 6. Label the tube and record the labeling in your notebook.

Running the Reaction

- 1. Take your tubes to an available thermocycler.
- The PCR sewing reaction takes place in two parts. In the first part, you will run the usual PCR cycle for only 5 cycles in order to let the fragments prime each other and synthesize a small amount of full length DNA product.

Step 1 (Denaturation):	98°C	0:30 min	
Step 2 (Denaturation loop):	98°C	0:15 min)	
Step 3 (Annealing):	50°C – 60°C	0:25 min	X5 cycles
Step 4 (Elongation):	72°C	30 sec/kb	•
Step 5 (Final Elongation):	72°C	5:00 min	
Step 6 (Storage):	4°C	forever	

3. After the first 5 cycles are over, add **1.0ul of 10uM end primers** to each tube. **Also add 0.5ul of Phusion polymerase.** Run the PCR for an additional 20-25 cycles, as usual.

Step 1 (Denaturation):	98°C	0:30 min
Step 2 (Denaturation loop):	98°C	0:15 min)
Step 3 (Annealing):	50°C – 60°C	0:25 min \ X20-25 cycles
Step 4 (Elongation):	72°C	30 sec/kb
Step 5 (Final Elongation):	72°C	5:00 min
Step 6 (Storage):	4°C	forever

4. When your PCR run is over, you will have to purify the DNA using **Gel Purification/Extraction**. Look for a band corresponding to the sum of the two fragments you attempted to sew together.