

Easy-DNA[™] Kit

For genomic DNA isolation

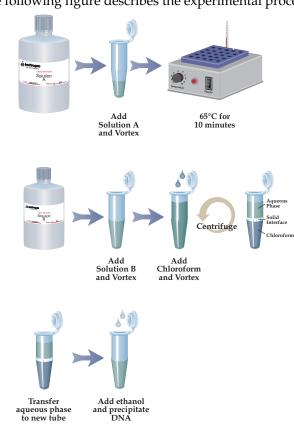
Catalog Number K1800-01

Document part Number 25-0056 Publication Number MAN0000015 Revision Number 2.0

For Research Use Only. Not for use in diagnostic procedures.

Contents

Important Information	4
Introduction	5
Overview	5
Methods	7
General Information	7
Protocol #1 – Small Blood Samples and Hair Follicles	8
Protocol #2 – 30 Minute DNA Extraction from Blood Samples	9
Protocol #3 – Small Amounts of Cells, Tissues, or Plant Leaves	10
Protocol #4 – Large Samples of Tissue, Cells, or Blood	11
Protocol #5 – Small Scale Isolation of DNA from Yeast Cells	12
Protocol #6 – Large Scale Isolation of DNA from Yeast Cells	13
Protocol #7 – Isolation of DNA from Baculovirus	14
Protocol #8 – Isolation of DNA from Mouse Tails	15
Guidelines for Protocol Development	16
Troubleshooting	17
Appendix	18
Recipes	
Technical Support	19


Important Information

Shipping/Storage		or long-term	room temperature and should be stored at storage (>6 months), store the mussel grader at –20°C.
Kit Contents	The following compo component at room t		cluded in the Easy-DNA [™] Kit. Store each
	Item	Volume	Composition
	Solution A	55 mL	Lysis Solution
	Solution B	25 mL	Precipitation Solution
	TE Buffer	100 mL	10 mM Tris-HCl, pH 7.5, 1 mM EDTA, pH 8.0
	Mussel Glycogen	750 μL	2 mg/mL in sterile water
	RNase	750 μL	2 mg/mL in sterile water
	Protein Degrader	750 μL	5 mg/mL in sterile water
Precipitates	The following table d If there is a precipit		at to do if precipitates form in solutions in this kit. Then
	Solution A		Warm the solution to 45°C and swirl to dissolve precipitate.
			Be sure to cool to room temperature before use.
	Solution B		Stir the solution before use and let the precipitate settle to the bottom.
			When pipetting be sure not to draw up precipitate.
	The Protein Degrade after thawing (only –20°C)		Warm the solution at 37°C for 5 minutes.

Introduction

Overview		
Easy-DNA [™] Kit	 The Easy-DNA[™] Kit is a simple, quick, and inexperiof DNA from a variety of sources. DNA from the sesuccessfully isolated and used to produce PCR proexperiments. Fresh, dried, frozen, or heparinized blood Tissue culture cells, both suspended and trypsi Mammalian tissue E. coli Yeast cells Plant leaves Hair follicles Mouse tails Baculovirus (viral particles) 	ources listed has been ducts or for Southern blot
Experimental Overview	Cells are lysed by the addition of Solution A and su	ubsequent incubation at 65°C. by the addition of Solution B
	and chloroform. The solution is then centrifuged to phases with a solid interface separating the two ph clear aqueous phase, the proteins and lipids are in chloroform forms the lower phase. The DNA is the ethanol, and resuspended in TE buffer. Purified DN restriction digestion, or may be stored at 4°C.	ases. The DNA is in the upper, the solid interface, and the n removed, precipitated with
Expected Yields	and chloroform. The solution is then centrifuged to phases with a solid interface separating the two ph clear aqueous phase, the proteins and lipids are in chloroform forms the lower phase. The DNA is the ethanol, and resuspended in TE buffer. Purified DN	ases. The DNA is in the upper, the solid interface, and the in removed, precipitated with NA may be used for PCR or
	and chloroform. The solution is then centrifuged to phases with a solid interface separating the two ph clear aqueous phase, the proteins and lipids are in chloroform forms the lower phase. The DNA is the ethanol, and resuspended in TE buffer. Purified DN restriction digestion, or may be stored at 4°C.	ases. The DNA is in the upper, the solid interface, and the in removed, precipitated with NA may be used for PCR or
	and chloroform. The solution is then centrifuged to phases with a solid interface separating the two ph clear aqueous phase, the proteins and lipids are in chloroform forms the lower phase. The DNA is the ethanol, and resuspended in TE buffer. Purified DN restriction digestion, or may be stored at 4°C. The following table gives the approximate yield of	ases. The DNA is in the upper, the solid interface, and the in removed, precipitated with NA may be used for PCR or DNA from a variety of samples
	and chloroform. The solution is then centrifuged to phases with a solid interface separating the two ph clear aqueous phase, the proteins and lipids are in chloroform forms the lower phase. The DNA is the ethanol, and resuspended in TE buffer. Purified DN restriction digestion, or may be stored at 4°C. The following table gives the approximate yield of Sample	ases. The DNA is in the upper, the solid interface, and the in removed, precipitated with NA may be used for PCR or DNA from a variety of samples Yield of DNA
	and chloroform. The solution is then centrifuged to phases with a solid interface separating the two ph clear aqueous phase, the proteins and lipids are in chloroform forms the lower phase. The DNA is the ethanol, and resuspended in TE buffer. Purified DN restriction digestion, or may be stored at 4°C. The following table gives the approximate yield of Sample 1 µL of blood	ases. The DNA is in the upper, the solid interface, and the on removed, precipitated with NA may be used for PCR or DNA from a variety of samples Yield of DNA 5–10 ng
	and chloroform. The solution is then centrifuged to phases with a solid interface separating the two ph clear aqueous phase, the proteins and lipids are in chloroform forms the lower phase. The DNA is the ethanol, and resuspended in TE buffer. Purified DN restriction digestion, or may be stored at 4°C. The following table gives the approximate yield of Sample 1 μ L of blood 10 μ L of blood	ases. The DNA is in the upper, the solid interface, and the in removed, precipitated with NA may be used for PCR or DNA from a variety of samples Yield of DNA 5–10 ng 20–30 ng
	and chloroform. The solution is then centrifuged to phases with a solid interface separating the two ph clear aqueous phase, the proteins and lipids are in chloroform forms the lower phase. The DNA is the ethanol, and resuspended in TE buffer. Purified DN restriction digestion, or may be stored at 4°C. The following table gives the approximate yield of Sample 1 μ L of blood 10 μ L of blood 10 ⁷ Sf9 cells	ases. The DNA is in the upper, the solid interface, and the in removed, precipitated with NA may be used for PCR or DNA from a variety of samples Vield of DNA 5–10 ng 20–30 ng ~170–180 μg
	and chloroform. The solution is then centrifuged to phases with a solid interface separating the two ph clear aqueous phase, the proteins and lipids are in chloroform forms the lower phase. The DNA is the ethanol, and resuspended in TE buffer. Purified DN restriction digestion, or may be stored at 4°C. The following table gives the approximate yield of Sample 1 µL of blood 10 µL of blood 10 ⁷ Sf9 cells 10 ⁹ <i>E. coli</i> cells	ases. The DNA is in the upper, the solid interface, and the in removed, precipitated with NA may be used for PCR or DNA from a variety of samples Yield of DNA 5–10 ng 20–30 ng ~170–180 µg ~30–40 µg
	and chloroform. The solution is then centrifuged to phases with a solid interface separating the two ph clear aqueous phase, the proteins and lipids are in chloroform forms the lower phase. The DNA is the ethanol, and resuspended in TE buffer. Purified DN restriction digestion, or may be stored at 4°C. The following table gives the approximate yield of Sample 1 μ L of blood 10 μ L of blood 10 ⁷ Sf9 cells 10 ⁹ <i>E. coli</i> cells 50 mg leaf tissue	ases. The DNA is in the upper, the solid interface, and the on removed, precipitated with NA may be used for PCR or DNA from a variety of samples Vield of DNA 5–10 ng 20–30 ng ~170–180 µg ~30–40 µg ~4 µg
	and chloroform. The solution is then centrifuged to phases with a solid interface separating the two ph clear aqueous phase, the proteins and lipids are in chloroform forms the lower phase. The DNA is the ethanol, and resuspended in TE buffer. Purified DN restriction digestion, or may be stored at 4°C. The following table gives the approximate yield of Sample 1 μ L of blood 10 μ L of blood 10 ⁷ Sf9 cells 10 ⁹ <i>E. coli</i> cells 50 mg leaf tissue 50 mg of human liver tissue	Asses. The DNA is in the upper, the solid interface, and the in removed, precipitated with NA may be used for PCR or DNA from a variety of samples Vield of DNA 5–10 ng 20–30 ng ~170–180 µg ~30–40 µg ~4 µg ~150 µg
	and chloroform. The solution is then centrifuged to phases with a solid interface separating the two ph clear aqueous phase, the proteins and lipids are in chloroform forms the lower phase. The DNA is the ethanol, and resuspended in TE buffer. Purified DN restriction digestion, or may be stored at 4°C. The following table gives the approximate yield of Sample $1 \mu L$ of blood $10 \mu L$ of blood 10^7 Sf9 cells 10^9 <i>E. coli</i> cells 50 mg leaf tissue 50 mg of human liver tissue 87 mg of human brain tissue	ases. The DNA is in the upper, the solid interface, and the in removed, precipitated with NA may be used for PCR or DNA from a variety of samples Vield of DNA 5–10 ng 20–30 ng ~170–180 μg ~30–40 μg ~4 μg ~150 μg ~170 μg
	and chloroform. The solution is then centrifuged to phases with a solid interface separating the two ph clear aqueous phase, the proteins and lipids are in chloroform forms the lower phase. The DNA is the ethanol, and resuspended in TE buffer. Purified DN restriction digestion, or may be stored at 4°C. The following table gives the approximate yield of Sample 1 µL of blood 10 µL of blood 10 ⁷ Sf9 cells 10 ⁹ <i>E. coli</i> cells 50 mg leaf tissue 50 mg of human liver tissue 87 mg of human brain tissue 500 mg of human brain tissue	ases. The DNA is in the upper, the solid interface, and the in removed, precipitated with NA may be used for PCR or DNA from a variety of samples Vield of DNA 5–10 ng 20–30 ng -170–180 μg -30–40 μg -150 μg -170 μg -700 μg
	and chloroform. The solution is then centrifuged to phases with a solid interface separating the two ph clear aqueous phase, the proteins and lipids are in chloroform forms the lower phase. The DNA is the ethanol, and resuspended in TE buffer. Purified DN restriction digestion, or may be stored at 4°C. The following table gives the approximate yield of Sample $1 \mu L$ of blood $10 \mu L$ of blood 10^7 Sf9 cells $10^9 E. coli$ cells 50 mg leaf tissue 50 mg of human liver tissue 87 mg of human brain tissue 500 mg of rat heart tissue	ases. The DNA is in the upper, the solid interface, and the in removed, precipitated with NA may be used for PCR or DNA from a variety of samples Vield of DNA 5–10 ng 20–30 ng ~170–180 μg ~30–40 μg ~4 μg ~150 μg ~170 μg ~170 μg ~100 μg
	and chloroform. The solution is then centrifuged to phases with a solid interface separating the two ph clear aqueous phase, the proteins and lipids are in chloroform forms the lower phase. The DNA is the ethanol, and resuspended in TE buffer. Purified DN restriction digestion, or may be stored at 4°C. The following table gives the approximate yield of Sample 1 μ L of blood 10 μ L of blood 10 ⁷ Sf9 cells 10 ⁹ <i>E. coli</i> cells 50 mg leaf tissue 50 mg of human liver tissue 87 mg of human brain tissue 500 mg of rat heart tissue 2 mL of blood	ases. The DNA is in the upper, the solid interface, and the in removed, precipitated with NA may be used for PCR or DNA from a variety of samples $\begin{array}{r} \hline \mathbf{Yield of DNA} \\ \hline 5-10 ng \\ 20-30 ng \\ \hline 20-30 ng \\ \hline -170-180 \mu g \\ \hline -30-40 \mu g \\ \hline -4 \mu g \\ \hline -150 \mu g \\ \hline -700 \mu g \\ \hline -700 \mu g \\ \hline -40 \mu g \\ \hline \end{array}$
	and chloroform. The solution is then centrifuged to phases with a solid interface separating the two ph clear aqueous phase, the proteins and lipids are in chloroform forms the lower phase. The DNA is the ethanol, and resuspended in TE buffer. Purified DN restriction digestion, or may be stored at 4°C. The following table gives the approximate yield of Sample $1 \mu L$ of blood $10 \mu L$ of blood 10^7 Sf9 cells 10^9 <i>E. coli</i> cells 50 mg leaf tissue 50 mg of human liver tissue 87 mg of human brain tissue 500 mg of rat heart tissue 2 mL of blood 4×10^9 <i>Pichia pastoris</i> cells	ases. The DNA is in the upper, the solid interface, and the in removed, precipitated with NA may be used for PCR or DNA from a variety of samples Vield of DNA 5–10 ng 20–30 ng ~170–180 µg ~170–180 µg ~150 µg ~150 µg ~170 µg ~100 µg ~100 µg ~850 µg

Overview, Continued

Flow Chart The following figure describes the experimental process.

Materials Supplied by User

The following materials need to be made or supplied by the user. Some reagents apply only to specific protocols, so review the protocol in question before you decide which reagents to prepare.

Reagents

- Chloroform and Phenol:Chloroform:Isoamyl Alcohol (25:24:1, v/v) (Cat. no. 15593-031)
- 80% ethanol and 100% ethanol
- Isopropanol
- YPD medium (see **Recipes**, page 14)
- SCED solution (see **Recipes**, page 14)
- 20% polyethylene glycol in 1 M NaCl (see **Recipes**, page 14)
- Phosphate Buffered Saline (PBS; Cat. no. 10010-023)
- Zymolyase
- 1 M Sorbitol, 100 mM EDTA, 14 mM β-mercaptoethanol

Equipment

- Sterile 1.5-mL microcentrifuge tubes
- Shaking water bath
- Water bath or heat block
- Centrifuge, low-speed
- Microcentrifuge
- Vortex
- Ice bucket with ice
- Sterile 15-mL snap-cap polypropylene tubes (Falcon 2059 or equivalent)

Methods

General Information

General Handling Techniques	When handling DNA, make sure you use sterile solutions. The solutions provided in the kit are sterile and care must be taken to ensure that no DNases are introduced. Make sure all equipment that comes in contact with DNA is sterile. This includes pipette tips, microcentrifuge tubes, 15-mL snap-cap polypropylene tubes, and pipettes. Be sure pipettor barrels are clean and treated with ethanol. Repeat pipettors can be used for multiple samples because the exact volumes of solutions A, B, chloroform, and ethanol are not critical.		
Before Starting	You should have a heat block or water bath set to 65°C, an and have access to either a 4°C microcentrifuge or a 4°C cer the application.		
Selection of Protocols	There are eight different protocols depending on the type of Below is a table to help you find the right method to use with		
	Sample	Protocol Number	Page
	Fresh, frozen, or dried blood (1 μL–100 μL)	1	4
	1–5 hair follicle(s)		
	30-minute protocol for 350 µL blood	2	5
	Suspension or trypsinized cells (10 ³ -10 ⁷ cells)	3	6
	<i>E. coli</i> cells (0.5–1.0 mL overnight culture, $\sim 10^9$ cell/mL)		
	Mammalian tissues (3.5 mg–100 mg)		
	Fresh plant leaves (50 mg)		
	Mammalian tissues (100 mg–1 g)	4	7
	Tissue culture cells ($10^7 - 10^8$ cells)		
	Fresh blood samples (100 µL–2 mL)		
	Yeast cells, small scale isolation (1.5 mL stationary culture)	5	8
	Yeast cells, large scale isolation (10 mL stationary culture)	6	9
	Baculovirus (750 µL from occlusion-negative infections)	7	10
	Mouse tail (1 cm)	8	11
Note	If your sample is not represented above, see the section Gu	idelines for	Protocol

Development, page 12.

Protocol #1 – Small Blood Samples and Hair Follicles

Before Starting	mi	ce 1 μ L to 100 μ L of fresh, frozen, or dried blood or 1–5 hair follicle(s) in crocentrifuge tubes. Blood samples should be mixed to form a homogeneous ution. Chill 100% and 80% ethanol in a –20°C freezer. Thaw mussel glycogen (if stored at –20°C) and keep on ice. Equilibrate heat block or water bath to 65°C.
Isolation of DNA	1.	Add 50 µL Solution A to blood or hair follicle(s) and vortex in 1 second intervals until evenly dispersed.
	2.	Incubate at 65°C for 10 minutes.
	3.	Add 20 µL Solution B, and vortex vigorously until the precipitate moves freely in the tube and the sample is uniformly viscous (10 seconds–1 minute).
	4.	Add 70 µL chloroform and vortex until viscosity decreases and the mixture is homogeneous (10 seconds–1 minute).
	5.	Centrifuge at maximum speed in a microcentrifuge for 10 minutes at 4°C to separate the phases and form the interface. Transfer the upper aqueous phase to a fresh microcentrifuge tube. Proceed to DNA Precipitation .
DNA Precipitation	1.	Add 445 μ L TE buffer and 5 μ L mussel glycogen to DNA solution. Add 1 mL of 100% ethanol (–20°C) and mix by inversion.
	2.	Incubate tube on ice for 30 minutes.
	3.	Centrifuge at maximum speed in a microcentrifuge for 10–15 minutes at 4°C. Remove ethanol very carefully with a drawn-out Pasteur pipette.
	4.	Add 500 μ L of 80% ethanol (–20°C) and mix by inverting the tube 3–5 times.
	5.	Centrifuge at maximum speed in a microcentrifuge for 3–5 minutes at 4°C. Remove the 80% ethanol with a drawn-out Pasteur pipette.
	6.	Centrifuge at maximum speed in a microcentrifuge for 2–3 minutes at 4°C. Remove residual ethanol with a pipettor. Let air dry for 5 minutes.
	7.	Resuspend the pellet in 10 μ L TE buffer. DNA is ready for further experiments. Store at 4°C. See page 5 for expected yields.
Note		RNase is needed for this preparation as these are small samples of terminally ferentiated cells. There is very little RNA transcription occurring.

Protocol #2 – 30 Minute DNA Extraction from Blood Samples

v F		The Easy-DNA [™] Kit allows you to quickly and easily isolate high molecular weight genomic DNA from a variety of sample types and sizes. The following procedure allows you to isolate genomic DNA from blood samples in less than 30 minutes. The isolated DNA is ready for PCR or RFLP analysis.		
Before Starting	•	You will need 2.0-mL microcentrifuge tubes for this protocol Equilibrate heat block or water bath to 65°C		
Isolation of DNA	1.	Pipette 350 µL of blood into each microcentrifuge tube. Blood samples should be mixed to form a homogenous solution.		
	2.	Add 500 μ L of Solution A to the tube. Mix by inversion several times.		
	3.	Incubate at 65°C for 6 minutes.		
	4.	Remove sample from heat block or water bath and mix by inversion.		
	5.	Add 900 µL of chloroform and vortex vigorously. Be sure the sample is mixed completely. The mixing is complete when the liquid portion of the sample flows freely and the hemoglobin looks like small chocolate-covered particles.		
	6.	Add 200 μ L of Solution B and vortex briefly until the sample is uniformly viscous.		
	7.	Centrifuge at maximum speed in a microcentrifuge for 10 minutes at room temperature.		
	8.	Pipette the clear, aqueous phase into a new 1.5-mL microcentrifuge tube.		
Precipitation of Genomic DNA	1.	Add 1 mL of room temperature 100% ethanol and mix by inversion until a precipitate forms. A precipitate is usually seen within 30–60 seconds. If a precipitate is not seen, allow the tubes to incubate at room temperature for 10 minutes.		
	2.	Centrifuge at maximum speed in a microcentrifuge for 5 minutes at room temperature.		
	3.	Decant the supernatant and add 1 mL of room temperature 70% ethanol.		
	4.	Centrifuge at maximum speed in a microcentrifuge for 2 minutes at room temperature.		
	5.	Decant the supernatant. Centrifuge at maximum speed in a microcentrifuge for 1 minute at room temperature.		
	6.	Remove residual ethanol with a pipette and invert tubes to dry.		
	7.	Add 100–150 µL of autoclaved nuclease-free water to each tube.		
	8.	Incubate at 65°C for 5 minutes.		
	9.	Run genomic DNA on an agarose gel to check for size and yield. Bufferless, precast agarose E-Gel [®] Go! 1%Starter paks (Cat. no. G4401ST) are available from Life Technologies for fast and easy electrophoresis. Visit our website (www.lifetechnologies.com) or call Technical Support (see page 15) for more information. Store purified DNA at 4°C.		

Protocol #3 – Small Amounts of Cells, Tissues, or Plant Leaves

Samples	• • •	Suspension or trypsinized cells $(10^3-10^7 \text{ cells})$ <i>E. coli</i> cells $(0.5-1.0 \text{ mL of an overnight culture, ~1 × 109 cells/mL)}Mammalian tissues (3.5 mg to 100 mg)Fresh plant leaves (50 mg)$
Preparation	200 pel Fre pes	lls must be pelleted and the medium decanted. Resuspend cell pellet in D µL 1X PBS (Cat. no. 10010-023). This will eliminate the formation of a salt llet when precipitating DNA. eeze tissue and plant leaves in liquid nitrogen and pulverize with a mortar and stle. Place samples in microcentrifuge tubes for processing. D te: Fresh, minced leaves will yield DNA, but not as much and not as high
		ality as when the fresh leaves are frozen in liquid nitrogen and pulverized.
Before Starting	•	Chill 100% and 80% ethanol in a –20°C freezer. Thaw RNase (if stored at –20°C) and keep on ice. Equilibrate two heat blocks or water baths, one to 37°C and the other to 65°C.
Isolation of DNA	1.	Add 350 µL Solution A to cell suspension, tissue, or plant parts and vortex in 1 second intervals until evenly dispersed.
	2.	Incubate at 65°C for 10 minutes.
	3.	Add 150 µL Solution B and vortex vigorously until the precipitate moves freely in the tube, and the sample is uniformly viscous (10 seconds–1 minute).
	4.	Add 500 µL chloroform and vortex until viscosity decreases and the mixture is homogeneous (10 seconds–1 minute).
	5.	Centrifuge at maximum speed for 10–20 minutes at 4°C to separate phases. Transfer the upper phase into a fresh microcentrifuge tube. Proceed to DNA Precipitation .
DNA Precipitation	1.	To the DNA solution, add 1 mL of 100% ethanol (–20°C) and vortex briefly.
	2.	Incubate tube on ice for 30 minutes.
	3.	Centrifuge at maximum speed for 10–15 minutes at 4°C. Remove ethanol from the pellet with a drawn-out Pasteur pipette.
	4.	Add 500 μ L of 80% ethanol (–20°C) and mix by inverting the tube 3–5 times.
	5.	Centrifuge at maximum speed for 3–5 minutes at 4°C. Save the pellet and remove the 80% ethanol with drawn-out Pasteur pipette.
	6.	Centrifuge at maximum speed for 2–3 minutes at 4°C. Remove residual ethanol with a pipettor. Let air dry 5 minutes.
	7.	Resuspend the pellet in 100 μ L TE buffer. Add 2 μ L of a 2 mg/mL RNase to bring the concentration to 40 μ g/mL.
	8.	Incubate at 37°C for 30 minutes. DNA is ready for further experiments. Store at 4°C.

Protocol #4 – Large Samples of Tissue, Cells, or Blood

Samples	Mammalian tissues (100 mg to 1 g) Tissue culture cells (10^7 – 10^8 cells) Blood (100 µL to 2 mL)	
Preparation	let cells and decant medium. There is no need to resuspend in 1X PBS. eze mammalian tissues in liquid nitrogen and pulverize. ce all samples into sterile, snap-cap, 15-mL polypropylene tube.	
Before Starting	Chill 100% and 80% ethanol in a –20°C freezer. Thaw RNase (if stored at –20°C) and keep on ice. Equilibrate two heat blocks or water baths, one to 37°C and the other to 65°C	C.
Isolation of DNA	Add 3.5 mL Solution A to your cell pellet, tissue, or blood, and vortex in 1 second intervals until evenly dispersed.	
	Incubate at 65°C for 10 minutes. Add 1.5 mL Solution B and vortex vigorously until the precipitate moves freely in the tube, and the sample is uniformly viscous (10 seconds– 1 minute).	
	Add 5 mL chloroform and vortex until the viscosity decreases and the mixture is homogeneous (10 seconds–1 minute).	
	Centrifuge at $8000 \times g$ for 20 minutes at 4°C to separate the phases and form an interface. Carefully decant the upper, aqueous phase into a fresh 15-mL tube.	l
	Add 5 mL phenol:chloroform:isoamyl alcohol to the aqueous phase, vortex, and centrifuge at 8000 × g for 5 minutes at 4°C to separate phases.	
	Transfer upper, aqueous phase to a new 15-mL tube. Proceed to DNA Precipitation .	
DNA Precipitation	Add 10 mL 100% ethanol (–20°C) to the DNA solution and vortex briefly.	
	Incubate tube on ice for 30 minutes. Centrifuge at $8000 \times g$ for 10–15 minutes at 4°C. Keep the pellet and carefull decant ethanol.	y
	Add 5 mL 80% ethanol (–20°C) and invert the tube 3–5 times.	
	Centrifuge at 8000 × g for 3–5 minutes at 4°C. Carefully decant 80% ethanol	•
	Centrifuge the pellet at 8000 × g for 2–3 minutes at 4°C. Remove excess ethanol with a pipettor. Let air dry 5 minutes.	
	Resuspend the pellet in 1 mL TE buffer. Add 20 μ L 2 mg/mL RNase to a final concentration of 40 μ g/mL.	
	Incubate at 37°C for 30 minutes. DNA is ready for further experiments. Stor at 4°C. See page 5 for the expected yield of DNA.	e

Protocol #5 – Small Scale Isolation of DNA from Yeast Cells

Introduction	The following method was developed at Life Technologies to conveniently isolate DNA from yeast.
Solutions	 You will need to prepare the following solutions. Minimal Medium (See Recipes, page 14) TE buffer, pH 7.4 (10 mM Tris-HCl, pH 7.4, 1 mM EDTA, pH 8.0) 1 M Sorbitol, 100 mM EDTA, 14 mM β-mercaptoethanol (make fresh) Zymolyase, 3 mg/mL stock solution in water (Seikagaku America, Inc.) SCED (See Recipes, page 14) Chloroform and Isopropanol 70% or 80% ethanol RNase A (not supplied with the kit)
Preparation of Cells	 Grow the yeast strain at 30°C to an OD₆₀₀ of 5–10 in 2–5 mL of minimal medium. Harvest 1.5 mL of the culture by centrifuging at maximum speed in a
	microcentrifuge for 1–2 minutes at room temperature.
	3. Resuspend cells in 1.5 mL TE and centrifuge as in Step 2.
	 Resuspend cells in 1 mL fresh 1 M Sorbitol, 100 mM EDTA, 14 mM β-mercaptoethanol. Vortex to resuspend.
	 Add 1.5 µL of 3 mg/mL Zymolyase to each tube of cells and incubate at 30°C for 1 hour.
	6. Centrifuge at 4000 rpm in a microcentrifuge for 8 minutes at room temperature.
	Note: Centrifuge with less force as the cells are fragile due to digestion with Zymolyase.
	7. Gently resuspend cells in 200 μL fresh SCED and incubate at 37°C for 1 hour.
DNA Isolation	1. Add 350 μ L Solution A to the cell suspension from Step 7, above and vortex.
	2. Incubate at 65°C for 10 minutes.
	3. Add 150 µL of Solution B and vortex.
	4. Add 600 μL chloroform and vortex.
	5. Centrifuge at maximum speed for 20 minutes at room temperature.
	 Transfer the aqueous layer to a fresh tube, add 600 μL isopropanol, and mix by inversion. Incubate at room temperature for 10 minutes.
	7. Centrifuge sample at maximum speed for 20 minutes at 4°C.
	 Wash pellet with cold 70% or 80% ethanol, centrifuge at maximum speed for 2 minutes at 4°C, remove ethanol, and air-dry.
	9. Resuspend the pellet in 50 μ L TE with 50 μ g/mL RNase A and incubate overnight at room temperature. Quantitate the amount of DNA. Use 5 μ L of this DNA solution in a 50 μ L PCR reaction.

Protocol #6 – Large Scale Isolation of DNA from Yeast Cells

Sample Preparation	Prepare YPD medium (see Recipes , page 14). Inoculate 10 mL of YPD medium with a single yeast colony and grow overnight. This will be your source of cells.
Before Starting	 Prepare SCED solution (see Recipes, page 14). Chill 100% and 80% ethanol in a -20°C freezer. Thaw RNase (if stored at -20°C) and keep on ice. Equilibrate two heat blocks or water baths, one at 37°C and the other at 65°C.
Washing the Yeast Cells	1. Transfer 10 mL of the overnight culture of yeast cells to a 15-mL snap-cap poly-propylene tube (Falcon 2059 or equivalent). Centrifuge cells at $4000 \times g$ for 5–10 minutes at 4°C. Save the pellet and decant the medium.
	2. Add 10 mL of sterile, deionized water and tap tube to resuspend cells. Centrifuge cells at $4000 \times g$ for 5–10 minutes at 4°C. Keep the pellet and decant the water.
	3. Resuspend the pellet in 2 mL SCED and incubate at 37°C for 1 hour.
Isolation of DNA	 Add 3.5 mL of Solution A to yeast cells and vortex in 1 second intervals until evenly dispersed.
	2. Incubate at 65°C for 10 minutes.
	3. Add 1.5 mL of Solution B and vortex vigorously until the precipitate moves freely in the tube, and the sample is uniformly viscous (10 seconds–1 minute).
	4. Add 5 mL of chloroform and vortex until the viscosity decreases and the mixture is homogeneous (10 seconds–1 minute).
	5. Centrifuge at $1000 \times g$ for 20 minutes at 4°C to separate phases and form the interface. Carefully decant the upper, aqueous phase into a fresh 15-mL tube. Proceed to DNA Precipitation .
DNA Precipitation	1. Add 10 mL 100% ethanol (–20°C) to the DNA solution, vortex briefly, and incubate the tube on ice for 30 minutes.
	2. Centrifuge at $4000 \times g$ for 10–15 minutes at 4°C. Decant the ethanol.
	3. Add 5 mL 80% ethanol (–20°C) to the pellet and invert the tube several times to wash the pellet. Centrifuge at $4000 \times g$ for 3–5 minutes at 4°C.
	4. Decant 80% ethanol and centrifuge at $4000 \times g$ for 2–3 minutes at 4°C. Remove residual ethanol with a pipettor. Let air dry 5 minutes.
	5. Resuspend the pellet in 100 μL TE buffer. Add 2 μL of 2 mg/mL RNase for a final concentration of 40 μg/mL. Incubate at 37°C for 30 minutes.
	6. Centrifuge tube at $4000 \times g$ for 1 minute at 4°C to remove insoluble particles.
	 Transfer supernatant to a fresh microcentrifuge tube. DNA is ready for further experiments. Store at 4°C. See page 5 for the expected yield of DNA.

Protocol #7 – Isolation of DNA from Baculovirus

Before Starting	•	Prepare 20% PEG in 1 M NaCl and chill at 4°C (see Recipes , page 14). Chill 100% and 70% ethanol in a –20°C freezer. Equilibrate a heat block at 65°C.
Sample Preparation		om a 6- or 12-well microtiter plate choose an occlusion-negative well and rupt the cell monolayer with a sterile pipette tip on a 1-mL pipettor.
Isolation of Viral Particles	1.	Transfer 750 μ L of an occlusion-negative cell suspension to a microcentrifuge tube. Centrifuge at 1000 × <i>g</i> for 3 minutes at room temperature to pellet cells. Transfer the supernatant to a fresh microcentrifuge tube.
	2.	Add 750 µL cold (4°C) 20% PEG in 1 M NaCl to the tube. Mix three times by inversion, and incubate on ice for 30 minutes.
	3.	Centrifuge at maximum speed for 10 minutes at 4°C to pellet the viral particles. Keep the pellet and discard the supernatant.
	4.	Re-centrifuge the tube at maximum speed for 2 minutes at 4°C. Remove residual supernatant with a pipettor.
	5.	Resuspend viral particles in 100 μ L TE buffer or sterile water. Proceed to Isolation of DNA .
Isolation of DNA	1.	Add 143 µL Solution A to resuspended viral particles and vortex for 1 second to mix.
	2.	Incubate at 65°C for 6 minutes.
	3.	Add 58 µL Solution B and vortex vigorously for 5 seconds until mixture is uniform and there is no white plug in the bottom of the tube.
	4.	Add 258 µL chloroform and vortex until evenly mixed.
	5.	Centrifuge at maximum speed for 10 minutes at 4°C to separate phases and create the interface. Pipette upper, aqueous phase to fresh microcentrifuge tube and proceed to DNA Precipitation .
DNA Precipitation	1.	Add 500 µL 100% ethanol (–20°C) to the DNA solution. Invert tube eight times to precipitate DNA.
	2.	Centrifuge at maximum speed for 5 minutes at 4°C. Keep the pellet and decant the ethanol.
	3.	Add 500 μ L 70% ethanol (–20°C) and centrifuge at maximum speed for 5 minutes at 4°C. Remove 70% ethanol with a drawn-out pipette.
	4.	Centrifuge at maximum speed for 2–3 minutes at 4°C. Remove residual ethanol with a pipettor and air dry 5 minutes.
	5.	Resuspend the pellet in 20 μ L sterile water. DNA is ready for further experiments. Store at 4°C or –20°C until ready for use.

Protocol #8 – Isolation of DNA from Mouse Tails

Before Starting: Day 1	 Thaw Protein Degrader (if stored at -20°C) and keep on ice. If cloudy, warm at 37°C for 5 minutes until clear. Equilibrate a shaking water bath to 60°C.
Isolation of DNA: Day 1	 To a fresh microcentrifuge tube, mix TE 320 μL Solution A 20 μL Solution B 10 μL Protein Degrader (5 mg/mL)5 μL
	 Add 1 cm of freshly cut mouse tail to the microcentrifuge tube and shake (225 rpm) the tube on its side at 60°C overnight (12–20 hours). Be sure to cap the tube tightly. Note: After incubation, the mouse tail should be totally digested with only tiny pieces of bone in the bottom of the tube. The solution will be cloudy and may be slightly colored depending on the color of the mouse tail.
Before Starting: Day 2	 Chill 100% and 80% ethanol in a -20°C freezer. Thaw RNase (if stored at -20°C) and keep on ice. Equilibrate a 37°C heat block or water bath.
Isolation of DNA: Day 2	 Add 300 μL Solution A and 120 μL Solution B to sample and vortex vigorously until solution is uniformly viscous (10 seconds–1 minute). Add 750 μL shlare form and contact until the viscous its decreases and the
	 Add 750 μL chloroform and vortex until the viscosity decreases and the mixture is homogeneous (10 seconds–1 minute).
	 Centrifuge at maximum speed for 10 minutes at 4°C and transfer upper aqueous phase to a fresh microcentrifuge tube.
	 If the upper phase is not clear, a second chloroform extraction is needed. Repeat steps 2 and 3. When upper phase is clear, proceed to DNA Precipitation.
DNA Precipitation	 Add 1.0 mL of 100% ethanol (-20°C) to the now clear upper phase, vortex, and incubate on ice for 30 minutes.
	2. Centrifuge at maximum speed for 10–15 minutes at 4°C. Remove ethanol with a drawn-out Pasteur pipette.
	3. Add 500 μ L 80% ethanol (–20°C) and mix by inverting the tube 3–5 times.
	4. Centrifuge at maximum speed for 3–5 minutes at 4°C. Remove 80% ethanol with a drawn-out Pasteur pipette.
	5. Centrifuge the tube at maximum speed for 1–3 minutes at 4°C. Remove residual ethanol with a pipettor. Let air dry 5 minutes.
	6. Resuspend the pellet in 49 μ L TE and add 1 μ L 2 mg/mL RNase to a final concentration of 40 μ g/mL. Incubate at 37°C for 30 minutes. DNA is ready for use. Store at 4°C.

Guidelines for Protocol Development

Introduction		cols given in this manual match t e following guidelines to develop		
Choosing a Starting Protocol	The following table gives suggestions for a protocol based on size and sample type.			
	If sample size is		Then, as a guide, use	
	Small or valuable (1–100 µL or <1 mg)		Protocol #1	
	Moderate (3–100 mg tissue, 10 ³ –10 ⁷ mammalian cells, or 10 ⁹ bacterial cells)		Protocol #3	
	Large (0.1 g–1 g tissue or 10 ⁷ –10 ⁸ mammalian cells)		Protocol #4	
	Other yeast cells		Protocol #5 or 6	
	Viral particles		Protocol #7	
Do I Need RNase?		describes conditions where you	might want to use RNase.	
	If sample size is Small	Terminally differentiated cells	No RNase.	
	Moderate	Viral particles	No RNase.	
	Moderate or large	Terminally differentiated cells or tissue, bacterial cells, yeast cells, or tissue culture cells	40 μg/mL RNase. Dilute stock solution of RNase with TE buffer if necessary.	
Do I Need Protein Degrader?	The following table will help you decide if you need to treat your sample with Protein Degrader. When using the Protein Degrader, remember to add the balance of Solutions A and B after the overnight treatment to properly extract the DNA (see Protocol #8).			
	If sample size is	And consists of	Then use	
	Small	Terminally differentiated cells	No Protein Degrader.	
	Moderate	tissue with high amounts of protein, i.e. connective tissue	100 μg of Protein Degrader and Protocol #8 to treat your sample.	
	Large	Tissue with high amounts of protein, i.e. connective tissue	1.0 mg of Protein Degrader and scale-up Protocol #8 to treat your sample.	
Do I Need Mussel Glycogen?		ll (1–100 μL or <1 mg) or if DNA a final concentration of 20 μg/m]		

Troubleshooting

Guidelines

Consult the following table for guidelines to troubleshoot problems which may occur.

If there is	Then	
No interface	Check and make sure you are using Solutions A and B correctly.	
No phases	Check and make sure you added chloroform.	
a colored interface	Do not worry. The interface picks up the pigments from your sample.	
A low yield or no DNA	 use mussel glycogen at a final concentration of 20 μg/mL to precipitate the DNA, or; 	
	 add 100 µg Protein Degrader and follow Protocol #8, or; 	
	• freeze sample in liquid nitrogen and pulverize with a mortar and pestle.	
Degraded DNA	 add 100 µg Protein Degrader and follow Protocol #8, or; 	
	• be sure all solutions are sterile.	
RNA in your sample	Add 40 μ g/mL RNase and incubate for 30 minutes at 37°C.	
A large salt pellet after	Re-precipitate the DNA as follows:	
precipitating your DNA	 Resuspend the pellet in 50 μL TE Buffer and add 50 μL 4 M ammonium acetate. 	
	2. Add 200 µL 100% ethanol (–20°C).	
	3. Centrifuge to pellet DNA and wash the pellet with 80% ethanol. Air dry the pellet for 5 minutes.	
	4. Resuspend the pellet in the desired volume of TE buffer.	

Appendix

Recipes

YPD Medium	Yeast Extract Peptone Dextrose (YPD) Medium (1liter) 1% Yeast extract 2% Peptone 2% dextrose (D-glucose)			
	1. Dissolve 10 g of Yeast extract and 20 g Peptone in 960 mL of deionized water.			
	2. Autoclave at 15 lbs/sq. in. for 20 minutes.			
	3. Make a 50% dextrose solution by dissolving 50 g of dextrose in 100 mL of deionized water. Filter-sterilize.			
	4. When autoclaved solution has cooled, add 40 mL of 50% glucose.			
Minimal Medium	1.34% Yeast Nitrogen Base $4 \times 10^{-5\%}$ D-biotin			
	2% dextrose or 1% glycerol plus any additional nutritional supplements			
	• Prepare 13.4% YNB (Yeast Nitrogen Base with Ammonium Sulfate, without amino acids), 0.02% D-biotin, 20% dextrose, 10% glycerol, and any other supplements as needed.			
	• Combine aseptically 800 mL autoclaved water with 100 mL of 13.4% YNB, 2 mL of 0.02% D-biotin, and 100 mL of 20% dextrose or 100 mL of 10% glycerol, plus any other supplements.			
SCED Solution	1 M Sorbitol			
	10 mM Sodium Citrate, pH 5.8			
	1 mM (ethylenedinitrilo)tetraacetic acid dihydrate (EDTA) 10 mM Dithiothreitol (DTT)			
	1. For 1 L, dissolve 182.2 g sorbitol, 2.94 g sodium citrate, and 0.372 g EDTA dihydrate in 900 mL deionized water. Adjust the pH to 5.8 with HCl.			
	2. Bring the volume up to 1 L and autoclave at 15 lbs/sq. in. for 20 minutes. This solution is called SCE and can be stored at room temperature.			
	 Make 10 mL of a 1 M DTT solution by dissolving 1.54 g DTT in 10 mL water. Aliquot into 1 mL samples and store frozen at -20°C. DTT can be thawed and refrozen. It is stable for at least 6 months. 			
	4. For 10 mL SCED, thaw and add 100 μ L of the 1 M DTT solution to 10 mL of SCE. Use immediately.			
20% PEG in 1 M	20% Polyethylene glycol 8000, 1 M NaCl			
	1. For 100 mL, mix 20 g PEG 8000 and 5.84 g NaCl in 100 mL water.			
NaCl	1. For 100 mL, mix 20 g PEG 8000 and 5.84 g NaCl in 100 mL water.			
	 For 100 mL, mix 20 g PEG 8000 and 5.84 g NaCl in 100 mL water. Autoclave 20 minutes at 15 lbs/sq. in. 			

Technical Support

Obtaining Support	For the latest services and support information for all locations, go to www.lifetechnologies.com .			
	At the website, you can:			
	• Access worldwide telephone and fax numbers to contact Technical Support and Sales facilities			
	Search through frequently asked questions (FAQs)			
	• Submit a question directly to Technical Support (techsupport@lifetech.com)			
	• Search for user documents, SDSs, vector maps and sequences, application notes, formulations, handbooks, certificates of analysis, citations, and other product support documents			
	Obtain information about customer training			
	Download software updates and patches			
Safety Data Sheets (SDS)	Safety Data Sheets (SDSs) are available at www.lifetechnologies.com/support .			
Certificate of Analysis	The Certificate of Analysis provides detailed quality control and product qualification information for each product. Certificates of Analysis are available on our website. Go to www.lifetechnologies.com/support and search for the Certificate of Analysis by product lot number, which is printed on the box.			
Limited Product Warranty	Life Technologies and/or its affiliate(s) warrant their products as set forth in the Life Technologies General Terms and Conditions of Sale found on the Life Technologies web site at www.lifetechnologies.com/termsandconditions . If you have any questions, please contact Life Technologies at www.lifetechnologies.com/support .			
Disclaimer	LIFE TECHNOLOGIES CORPORATION AND/OR ITS AFFILIATE(S) DISCLAIM ALL WARRANTIES WITH RESPECT TO THIS DOCUMENT, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. TO THE EXTENT ALLOWED BY LAW, IN NO EVENT SHALL LIFE TECHNOLOGIES AND/OR ITS AFFILIATE(S) BE LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY, OR UNDER ANY STATUTE OR ON ANY OTHER BASIS FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO THE USE THEREOF.			
	©2012 Life Technologies Corporation. All rights reserved. The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners.			

Notes

Notes

Notes

Headquarters 5791 Van Allen Way | Carlsbad, CA 92008 USA | Phone +1 760 603 7200 | Toll Free in USA 800 955 6288 For support visit lifetechnologies.com/support or email techsupport@lifetech.com

lifetechnologies.com