Team:BIT/project biosensors
From 2013.igem.org
Line 238: | Line 238: | ||
<p><img src="https://static.igem.org/mediawiki/2013/7/7a/BITflag.gif" width="1024" height="150" border="0" usemap="#Map"> | <p><img src="https://static.igem.org/mediawiki/2013/7/7a/BITflag.gif" width="1024" height="150" border="0" usemap="#Map"> | ||
<map name="Map"> | <map name="Map"> | ||
- | <area shape="rect" coords="17,3,115,29" href="https://2013.igem.org/wiki/index.php?title=Team:BIT/ | + | <area shape="rect" coords="17,3,115,29" href="https://2013.igem.org/wiki/index.php?title=Team:BIT/project_biosensors&action=edit"> |
<area shape="rect" coords="776,4,904,28" href="https://2013.igem.org/Team:BIT"> | <area shape="rect" coords="776,4,904,28" href="https://2013.igem.org/Team:BIT"> | ||
<area shape="rect" coords="929,4,1019,31" href="https://2013.igem.org/wiki/index.php?title=Special:UserLogout&returnto=Main_Page"> | <area shape="rect" coords="929,4,1019,31" href="https://2013.igem.org/wiki/index.php?title=Special:UserLogout&returnto=Main_Page"> |
Revision as of 08:18, 13 September 2013
Beta-lactam Detection Device |
Background Beta-lactam biosensor is aimed to create a biosensor that can be applied in practical life. It is useful for citizens to know what they drink and what they buy for their little babies are qualified and hygienic. While there are traditional methods to detect beta-lactam antibiotics, such as enzyme-linked immunosorbent assay (ELISA) and ECLIPSE50, all these methods have to rely on laboratories which are equipped with precise instruments. In order to solve the problem, our Beta-lactam biosensor is designed to be used on on-site detection in a few hours by users without special training. Device The bla operon has been found that is induced by beta-lactam. This device will work to detect the concentration of Beta-Lactam in dairy products. At the same time, we designed another two devices to decrease the detection limit. Chromate Detection Device Background Some illegal dairies always add leather hydrolysate into fresh milk and powdered milk to increase the percentage of protein in milk. Chromate, which is one of the elements of leather dye, is the main element that can be used to trace leather hydrolysate. Our Cr(VI)-biosensor is thus designed for the detection of chromate in dairy products. Our Cr(VI)-biosensor is designed to work in places where traditional biosensors cannot. This is important for consumers to know that what they buy for their consumption is qualified and safe to drink. While there are traditional methods for detection of chromate(such as Graphite furnace atomic absorption method, Oscillographic polarography, ICP-AES, High performance liquid chromatography, Spectrophotometric investigation,etc.), all these methods have to rely on laboratories equipped with precise, expensive, experimental apparatuses. However, with our Cr(VI)-biosensor, even consumers without specific training will be able to use it and the results will be knownin just a few hours. Cr(VI) is one of the major environmental contaminants, which reflects its numerous high-volume industrial applications and poor environmental practices in the disposal of chromium-containing waste products. High solubility and tetrahedral conformation of the chromate anion promote its rapid transport across biological membranes, and once internalized by cells, Cr(VI) exhibits a variety of toxic, mutagenic, and carcinogenic effects. Chromate and sulfate are structurally similar anions, which makes it difficult for cells to differentiate between them and is the basis for cellular uptake of chromate by sulfate transporters. Formation of DNA damage is a major cause of toxic and mutagenic responses in both human and bacterial cells, as evidenced by their increased sensitivity to chromate in the absence of DNA repair. Human and other mammalian cells lack detectable extrusion of chromate, and DNA repair is their main cellular defense mechanism against chromate toxicity. Because bacterial cells are less proficient in repair of chromium-DNA adducts compared to human cells, their ability to survive in the environment with heavy chromate contamination requires selection of alternative resistance mechanisms. Design Genes conferring resistance to chromate have been found in Pseudomonas spp., Streptococcus lactis, Ochrobactrumtritici 5bvl1 and Cupriavidusmetallidurans. The 7,189-bp-long TnOtChr of Ochrobactrumtritici 5bvl1 contains a group of chrB, chrA, chrC, and chrF genes situated between divergently transcribed resolvase and transposase genes. The chr promoter was strongly induced by chromate or dichromate, but it was completely unresponsive to Cr(III), oxidants, sulfate, or other oxyanions. Plasmid reporter experiments identified ChrB as a chromate-sensing regulator of chr expression. According to this evidence, we designed three kinds of devices working in E.coli (DH5α) to build Cr(VI)-biosensor. The chr promoter has a weak constitutive expression without chromate, while it is strongly induced to express. Device 2
|
Beijing Institutte of Technology © 2013 | Privacy Policy