Team:Dundee/Project/DetectionComparison

From 2013.igem.org

(Difference between revisions)
 
(One intermediate revision not shown)
Line 16: Line 16:
<div class="span12" style="text-align: justify">
<div class="span12" style="text-align: justify">
-
<p>The direct  method for detecting microcystin in water samples is high performance liquid chromatography (HPLC). This  process takes approximately 24 hours and is expensive due to the equipment required.  For this reason, the current method for regulating toxic microcystin levels in Scotland uses the indirect approach of cyanobacterial cell counts. However, this  process takes even longer. Using our biological detector we hope to reduce the time and cost of microcystin detection.<br><Br>
+
<p>The direct  method for detecting microcystin in water samples is high performance liquid chromatography (HPLC). This  process takes approximately 24 hours and is expensive due to the equipment required.  For this reason, the current method for regulating toxic microcystin levels in Scotland uses the indirect approach of cyanobacterial cell counts. However, this  process takes even longer. Using our biological detector we hope to reduce the time and cost of microcystin detection.<br><Br>
First, we considered  the effect that a 24 hr detection time could  have on the numbers of cyanobacteria and microcystin level  found in a water body.  This then allowed us to determine whether faster detection methods are necessary.  
First, we considered  the effect that a 24 hr detection time could  have on the numbers of cyanobacteria and microcystin level  found in a water body.  This then allowed us to determine whether faster detection methods are necessary.  
Line 79: Line 79:
Than is,  after 24 hours there can be up to 8.4 million times more microcystin molecules present than there is after 1 hour. Putting this ratio into perspective, this is the same as the height of the Empire State Building being compared to  the combined height of 7 <i>E. coli</i>.<Br><Br>
Than is,  after 24 hours there can be up to 8.4 million times more microcystin molecules present than there is after 1 hour. Putting this ratio into perspective, this is the same as the height of the Empire State Building being compared to  the combined height of 7 <i>E. coli</i>.<Br><Br>
Therefore, in the time period between collection of samples and obtaining results there could potentially  be  a vast increase in the concentration of microcystin present in the water body. This emphasises that HPLC, or even slower alternatives,  are  less than optimal  for toxin detection and that  early detection would provide a huge advantage. <br><br>
Therefore, in the time period between collection of samples and obtaining results there could potentially  be  a vast increase in the concentration of microcystin present in the water body. This emphasises that HPLC, or even slower alternatives,  are  less than optimal  for toxin detection and that  early detection would provide a huge advantage. <br><br>
-
  <h2>Results</h2>
+
 
-
We  conclude that faster detection methods are useful and our biological detector is worthwhile pursuing if we can reduce this detection time.  <br><br>
+
       </div>
       </div>
Line 96: Line 95:
   </div>
   </div>
 +
  <h2>Conclusion</h2>
 +
We  conclude that faster detection methods are useful and our biological detector is worthwhile pursuing if we can reduce this detection time.  <br><br>
     <div id="push"></div>
     <div id="push"></div>

Latest revision as of 20:03, 23 October 2013

iGEM Dundee 2013 · ToxiMop