Team:Grenoble-EMSE-LSU

From 2013.igem.org

(Difference between revisions)
 
(41 intermediate revisions not shown)
Line 22: Line 22:
<ul class="texte">
<ul class="texte">
<li id="titre">
<li id="titre">
-
                                 <h1 id="talke">TALK'E. coli</h1>
+
                                 <h1 id="talke">TALKE'coli</h1>
-
<h2>Light Automated Cell Control (Lac²)</h2>
+
-
<p><strong>This year, the Grenoble-EMSE-LSU iGEM team has developed a bioelectronic device enabling the population control of a bacterial culture with light:  Talk’E. coli.</strong><br><br>
+
-
                                In general, bacteria are among the fastest growing and most widespread organisms on Earth. They can thrive in nearly every environment or ecosystem, and some can even reach a doubling time of only 10min [1]. Even though bacterial growth conforms to quite simple mathematical laws, many parameters of this process are far from being fully understood. Unraveling these genotypic and phenotypic processes represents an important challenge in current public health issues. Conceptually, we have developed a biological system that will enable researchers to <a>monitor and control cellular growth with light</a>. Such an undertaking could be of great interest for improving the understanding of bacterial functions, especially in regards to characterizing cellular populations and the defense mechanisms involved with oxidative stress responses.<br><br>
+
-
                                Light allows for precise machine-to-cell and cell-to-machine communication in both time and space and was thus elected to <a>interface a biological cell culture to our electronic device</a>.</p>
+
-
<!---------- Image mappée ---------->
+
                                <p>Bacteria are among the fastest growing and most widespread organisms on Earth. They can thrive in nearly every environment or ecosystem, and some can double their population in only 10min <a href="#ref_home">[1]</a>. Even though bacterial growth follows quite simple mathematical laws, many parameters of this process are far from being fully understood. This makes bacterial growth hard to control in a laboratory. Thus unraveling these genotypic and phenotypic processes represents an important challenge in current public health issues. We have developed a biological system that will enable researchers to <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project">control live cell density</a> in a culture. Such a tool could be of great interest for improving our understanding of bacteria: characterizing oxidative stress defence and recovery, monitoring growth media component consumption rates, or just making sure the culture you left Friday evening in the lab is in the same state on Monday morning.<br><br></p>
-
 
+
-
<p align="center"><map name="overview" id="ov">
+
-
<area shape="poly" coords="48,39,309,42,309,94,102,94,102,207,47,207" href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Controlling" alt=""/>
+
-
<area shape="poly" coords="401,37,604,42,604,210,555,210,555,87,402,87" href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Controlling/Viability" alt=""/>
+
-
<area shape="poly" coords="48,285,102,285,102,371,548,371,555,210,604,210,610,435,43,435" href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Monitoring" alt=""/>
+
-
</map>
+
-
<img src="https://static.igem.org/mediawiki/2013/9/9a/1ere_version_image.png" usemap="#overview" alt="Project overview" width="650px" /></p>
 
-
 
-
<p id="legend"><strong><em>Overview on Light Automated Cell Control (Lac²).</em></strong><br>
 
-
<strong><em>Source:</em></strong> Carpentier et al., Structural Basis for the Phototoxicity of the Fluorescent Protein KillerRed, <em>FEBS Letters</em> 583.17 (2009): 2839-842</p>
 
-
 
-
<!-------------------->
 
-
                               
 
-
                                <p><br><br>Our system utilizes <em>Escherichia coli (E. coli)</em> bacteria that are producing the <a>photosensitizing protein KillerRed</a> (KR). When illuminated with light, the KR fluorescent protein (580/630nm) produces <a>Reactive Oxygen Species</a> (ROS). These species irreversibly damage cell proteins, membranes, and DNA, ultimately leading to cell death [2]. Bacterial growth is monitored by measuring the fluorescence of cells containing KillerRed, and population control can be achieved by modulating the amount of ROS produced inside the bacteria with light stimulation. Since the amount of ROS produced is closely related to the amount of intracellular KillerRed, a photosensitive system [3-4] was developed to regulate the concentration of this protein.<br><br>
 
-
                                The results given by our current biological experiments have enabled us to build a mathematical model that can help <a>predict the amount of living cells within our culture</a> and their growth rate in a specific set of experimental conditions such as: light intensity, illumination time, and concentration of intracellular KillerRed protein. The model was further implemented on a microcontroller, directing our electronic system Talk’E. Coli. This device, equipped with different light sources and a photodiode, can then be used to regulate cell population and growth to any arbitrary level within natural limits.<br><br>
 
-
                                </p>
 
-
                        </li>
 
-
 
-
                        <li><h2>References</h2>
 
-
                                <p>[1] L. Elsgaard and D. Prieur, Hydrothermal vents in Lake Tanganyika harbor spore-forming thermophiles with extremely rapid growth, <em>Journal of Great Lakes Research</em>, March 2011.<br>
 
-
                                  [2] M.E. Bulina et al., A genetically encoded photosensitizer, <em>Nature Biotechnology</em>, January 2006.<br>
 
-
                                  [3] J.J. Tabor et al., Multichromatic Control of Gene Expression in <em>Escherichia coli</em>, <em>Journal of Molecular Biology</em>, 2011.<br>
 
-
                                  [4] K.E. McGinness et al., Engineering Controllable Protein Degradation, <em>Molecular Cell</em>, June 2006.
 
-
                                </p>
 
-
</li>
 
-
 
-
                        <li id="next">
 
<!----- Images miniatures ----->
<!----- Images miniatures ----->
<ul class="miniature">
<ul class="miniature">
<li>
<li>
-
<a href="/Team:Grenoble-EMSE-LSU/Project/KR" title="KillerRed">
+
<a href="/Team:Grenoble-EMSE-LSU/Project/Biology" title="Biology">
-
<img src="https://static.igem.org/mediawiki/2013/5/57/KR_image.jpg" width="100px">
+
<img src="https://static.igem.org/mediawiki/2013/1/18/Grenoble_Biology.jpg">
-
<span>All about KillerRed in this section.</span>
+
<span>Biology</span>
</a>
</a>
</li>
</li>
<li>
<li>
-
<a href="/Team:Grenoble-EMSE-LSU/Project/Controlling/Open" title="Open Loop">
+
<a href="/Team:Grenoble-EMSE-LSU/Project/Modelling" title="Modelling">
-
<img src="https://static.igem.org/mediawiki/2013/e/ef/Open_loop.png" width="100px">
+
<img src="https://static.igem.org/mediawiki/2013/2/2e/Grenoble_Mod%C3%A9lisation.jpg">
-
<span>How does our open loop work ?</span>
+
<span>Modelling</span>
</a>
</a>
</li>
</li>
<li>
<li>
-
<a href="/Team:Grenoble-EMSE-LSU/Project/Controlling/Closed" title="Closed Loop">
+
<a href="/Team:Grenoble-EMSE-LSU/Project/Validation" title="Validation">
-
<img src="https://static.igem.org/mediawiki/2013/f/fb/Closed_loop.jpg" width="100px">
+
<img src="https://static.igem.org/mediawiki/2013/1/10/Grenoble_Validation.jpg">
-
<span>How does our closed loop work ?</span>
+
<span>Validation</span>
</a>
</a>
</li>
</li>
<li>
<li>
-
<a href="/Team:Grenoble-EMSE-LSU/Project/Modelling/Predict" title="Modelling">
+
<a href="/Team:Grenoble-EMSE-LSU/Project/Instrumentation" title="Electronics">
-
+
<img src="https://static.igem.org/mediawiki/2013/f/fb/Grenoble_Circuit_electronique.jpg">
-
<img src="https://static.igem.org/mediawiki/2013/1/12/Computer.jpg" width="100px">
+
<span>Electronics</span>
-
<span>All about modelisation in here.</span>
+
</a>
</a>
</li>
</li>
Line 89: Line 57:
<!-------------------->
<!-------------------->
 +
 +
                                <p>Light allows for precise machine-to-cell and cell-to-machine communication in both time and space and was thus elected to <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Instrumentation">interface a biological cell culture to our electronic device</a>.</p>
 +
 +
 +
<!---------- Image mappée ---------->
 +
 +
<!--<p align="center"><map name="overview" id="ov">
 +
<area shape="poly" coords="48,39,309,42,309,94,102,94,102,207,47,207" href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Controlling" alt=""/>
 +
<area shape="poly" coords="401,37,604,42,604,210,555,210,555,87,402,87" href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Controlling/Viability" alt=""/>
 +
<area shape="poly" coords="48,285,102,285,102,371,548,371,555,210,604,210,610,435,43,435" href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Monitoring" alt=""/>
 +
</map>-->
 +
 +
<p align="center"><img src="https://static.igem.org/mediawiki/2013/9/9a/1ere_version_image.png" usemap="#overview" alt="Project overview" width="600px" /></p>
 +
 +
<p id="legend"><strong><em>Overview on Light Automated Cell Control.</em></strong><br>
 +
<strong><em>Source:</em></strong> Carpentier <em>et al.</em>, Structural Basis for the Phototoxicity of the Fluorescent Protein KillerRed, <em>FEBS Letters</em>,2009.<br><br></p>
 +
 +
<!-------------------->
 +
                               
 +
                                <p>Our system utilizes <em>Escherichia coli (E. coli)</em> bacteria that produce the <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Biology#KillerRed">photosensitizing protein KillerRed</a>. When illuminated with light, the fluorescent protein KillerRed (580/630nm) produces Reactive Oxygen Species (ROS). These species irreversibly damage cell proteins, membranes, and DNA, ultimately leading to cell death <a href="#ref_home">[2]</a>. Bacterial growth is monitored by measuring the fluorescence of cells containing KillerRed, and population control can be achieved by modulating the amount of ROS produced inside the bacteria with light stimulation. Since the amount of ROS produced is closely related to the amount of intracellular KillerRed, a photosensitive system <a href="#ref_home">[3-4]</a> was developed to regulate the concentration of this protein.<br><br>
 +
                                We have built a mathematical model based on the results given by our biological experiments, that can help <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Modelling/Building">predict the amount of living cells within our culture</a> and their growth rate in a specific set of experimental conditions. These conditions depend on: light intensity, illumination time, and concentration of intracellular KillerRed protein. The model was further implemented on a, Arduino microcontroller, which drives our electronic system TalkE'Coli. This device, equipped with a white light source, a set of filters and a photodiode, can then be used to regulate living cell population and growth to any arbitrary level within natural limits.<br><br>
 +
                                </p>
                         </li>
                         </li>
 +
                        <li>
 +
                                <h2><a href="/Team:Grenoble-EMSE-LSU/Human_Practice/Lyon">Meet Them All !!!</a></h2>
 +
                                <p align="center" id="big">Don't forget to check the mail in your welcome pack in Lyon ;)<br>
 +
                                The prize of the "most sociable team" might be for you !!<br><br></p>
 +
                                <p align="center"><a href="/Team:Grenoble-EMSE-LSU/Human_Practice/Lyon"><img src="https://static.igem.org/mediawiki/2013/e/e0/Grenoble_Meet_Them_All.jpg" alt="" width="35%">
 +
<img src="https://static.igem.org/mediawiki/2013/4/4c/Grenoble_HP_enveloppe.JPG" alt="" width="35%"></a></p>
 +
 +
                        </li>
 +
 +
                        <li>
 +
                                <h2 id="ref_home">References</h2>
 +
                                <p><strong>[1]</strong> L. Elsgaard and D. Prieur, Hydrothermal vents in Lake Tanganyika harbor spore-forming thermophiles with extremely rapid growth, <em>Journal of Great Lakes Research</em>, March 2011.<br>
 +
                                  <strong>[2]</strong> M.E. Bulina <em>et al.</em>, A genetically encoded photosensitizer, <em>Nature Biotechnology</em>, January 2006.<br>
 +
                                  <strong>[3]</strong> J.J. Tabor <em>et al.</em>, Multichromatic Control of Gene Expression in <em>Escherichia coli</em>, <em>Journal of Molecular Biology</em>, 2011.<br>
 +
                                  <strong>[4]</strong> K.E. McGinness <em>et al.</em>, Engineering Controllable Protein Degradation, <em>Molecular Cell</em>, June 2006.
 +
                                </p>
 +
</li>
         </ul>
         </ul>
<!----- Footer ----->
<!----- Footer ----->
 +
<p align="center"><a href="/Team:Grenoble-EMSE-LSU/Team/Sponsors"><img src="https://static.igem.org/mediawiki/2013/3/39/Grenoble_Footer.png" alt="footer" height="350px"></a></p>
<!-- Adresse -->
<!-- Adresse -->
Line 102: Line 110:
<!-- Sponsors -->
<!-- Sponsors -->
-
 
+
<!--
         <ul class="footer">
         <ul class="footer">
                 <li class="l1">
                 <li class="l1">
Line 128: Line 136:
                 </li>
                 </li>
</ul>
</ul>
-
      
+
     -->
     </div>
     </div>
</html>
</html>

Latest revision as of 03:42, 5 October 2013

Grenoble-EMSE-LSU, iGEM


Grenoble-EMSE-LSU, iGEM

footer

Retrieved from "http://2013.igem.org/Team:Grenoble-EMSE-LSU"