Team:Grenoble-EMSE-LSU/Project/Biology

From 2013.igem.org

(Difference between revisions)
Line 62: Line 62:
                                         The choice of an inducible promoter is linked to the absence of literature about the effects of KillerRed on cells in low light. Since KillerRed could be cytotoxic and prevent bacteria from growing even at low doses of light, we wanted to be able to control its intracellular concentration. A negative control for KillerRed characterization was also required. We decided to use the fluorescent protein mCherry, which displays the same excitation and emission spectra as KillerRed <a href="#ref_bio_1">[4]</a>, and was shown not to be cytotoxic upon light illumination <a href="#ref_bio_1">[5]</a>. pSB1C3::pLac-RBS-mCherry (BBa_K1141000) was thus constructed from the existing biobricks BBa_R0010 and BBa_J06702 (Fig 3.).<br><br></p>
                                         The choice of an inducible promoter is linked to the absence of literature about the effects of KillerRed on cells in low light. Since KillerRed could be cytotoxic and prevent bacteria from growing even at low doses of light, we wanted to be able to control its intracellular concentration. A negative control for KillerRed characterization was also required. We decided to use the fluorescent protein mCherry, which displays the same excitation and emission spectra as KillerRed <a href="#ref_bio_1">[4]</a>, and was shown not to be cytotoxic upon light illumination <a href="#ref_bio_1">[5]</a>. pSB1C3::pLac-RBS-mCherry (BBa_K1141000) was thus constructed from the existing biobricks BBa_R0010 and BBa_J06702 (Fig 3.).<br><br></p>
-
                                         <p align="center"><img src="https://static.igem.org/mediawiki/2013/0/00/Grenoble_Biobricks_KR_and_mCherry.png" alt="biobricks" width="600px"></p>
+
                                         <p align="center"><img src="https://static.igem.org/mediawiki/2013/0/00/Grenoble_Biobricks_KR_and_mCherry.png" alt="biobricks" width="700px"></p>
                                         <p id="legend">Figure 3.<br>Biobricks BBa_K1141002 <em>(A)</em> and BBa_K1141000 <em>(B)</em> used for characterizing KillerRed. <em>(C)</em> Picture showing a pellet of KillerRed-expressing bacteria.</p>
                                         <p id="legend">Figure 3.<br>Biobricks BBa_K1141002 <em>(A)</em> and BBa_K1141000 <em>(B)</em> used for characterizing KillerRed. <em>(C)</em> Picture showing a pellet of KillerRed-expressing bacteria.</p>
</li>
</li>
Line 108: Line 108:
                                         <p>Our proof of concept experiment was performed using our experimental protocol. Cells from the ON pre culture were re suspended in two different Erlenmeyer flasks, filled with 25 mL M9 medium, supplemented with 200 µg/µL ampicillin, 50 µg/µL kanamycin and 0.05 mM IPTG. The two cell samples were further incubated at 37°C, 200 rpm, while monitoring OD610 and fluorescence at 610 nm. One cell sample was illuminated at maximal intensity (P = 0.03 µW/cm<sup>2</sup>) from time point 180 min until the end of the kinetic experiment (740 min) whereas the second one was kept in the dark. Cells were plated on agar plates at each time point, using serial dilutions. Results are shown in Fig. 7.<br><br></p>
                                         <p>Our proof of concept experiment was performed using our experimental protocol. Cells from the ON pre culture were re suspended in two different Erlenmeyer flasks, filled with 25 mL M9 medium, supplemented with 200 µg/µL ampicillin, 50 µg/µL kanamycin and 0.05 mM IPTG. The two cell samples were further incubated at 37°C, 200 rpm, while monitoring OD610 and fluorescence at 610 nm. One cell sample was illuminated at maximal intensity (P = 0.03 µW/cm<sup>2</sup>) from time point 180 min until the end of the kinetic experiment (740 min) whereas the second one was kept in the dark. Cells were plated on agar plates at each time point, using serial dilutions. Results are shown in Fig. 7.<br><br></p>
-
                                         <p align="center"><img src="https://static.igem.org/mediawiki/2013/0/08/Grenoble_KR_proof_of_concept.png" alt="" width="600px"></p>
+
                                         <p align="center"><img src="https://static.igem.org/mediawiki/2013/0/08/Grenoble_KR_proof_of_concept.png" alt="" width="700px"></p>
                                         <p id="legend">Figure 7.<br>Results of OD610 <em>(A)</em>, fluorescence at 540/630 nm <em>(B)</em> and number of cells per µL <em>C</em> as a function of time for both the dark (blue) and illuminated (red) samples.<br>Cell plating was performed every 60-80 min during the kinetic experiment, using serial dilutions. Each agar plate was incubated 12-13 h at 37°C prior to count colonies. Only the plates displaying between 30 and 300 visible colonies were considered for cell counting.<br><br></p>
                                         <p id="legend">Figure 7.<br>Results of OD610 <em>(A)</em>, fluorescence at 540/630 nm <em>(B)</em> and number of cells per µL <em>C</em> as a function of time for both the dark (blue) and illuminated (red) samples.<br>Cell plating was performed every 60-80 min during the kinetic experiment, using serial dilutions. Each agar plate was incubated 12-13 h at 37°C prior to count colonies. Only the plates displaying between 30 and 300 visible colonies were considered for cell counting.<br><br></p>
Line 123: Line 123:
                                         <p> mCherry and KillerRed-expressing M15 bacteria were inoculated at OD610 = 0.015 in LB medium, supplemented with antibiotics and 0.05 mM IPTG. Cell samples were subsequently incubated at 37°C, 200 rpm. Fluorescence (540/630 nm) and OD610 measurements were performed every 20-100 min for 535 min. Erlenmeyers were kept in the dark for the first 180 min, and were then illuminated (P = 0.03 µW/cm<sup>2</sup>) for the rest of the experiment.<br><br></p>
                                         <p> mCherry and KillerRed-expressing M15 bacteria were inoculated at OD610 = 0.015 in LB medium, supplemented with antibiotics and 0.05 mM IPTG. Cell samples were subsequently incubated at 37°C, 200 rpm. Fluorescence (540/630 nm) and OD610 measurements were performed every 20-100 min for 535 min. Erlenmeyers were kept in the dark for the first 180 min, and were then illuminated (P = 0.03 µW/cm<sup>2</sup>) for the rest of the experiment.<br><br></p>
-
<p align="center"><img src="https://static.igem.org/mediawiki/2013/a/a9/Grenoble_mCherry_vs_KR.png" alt="mCherry vs KillerRed" width="600px"></p>
+
<p align="center"><img src="https://static.igem.org/mediawiki/2013/a/a9/Grenoble_mCherry_vs_KR.png" alt="mCherry vs KillerRed" width="700px"></p>
<p id="legend">Figure 8.<br>OD610 <em>(A)</em> and fluorescence <em>(B)</em> as a function of time of mCherry and KillerRed expressing M15 bacteria. Constant light illumination at maximum intensity was applied from 180 min to 535 min. Temperature was measured in each Erlenmeyer during illumination and was shown to stay constant and equal to 37°C. The error bars represent the standard errors of 2 independent measurements.<br><br></p>
<p id="legend">Figure 8.<br>OD610 <em>(A)</em> and fluorescence <em>(B)</em> as a function of time of mCherry and KillerRed expressing M15 bacteria. Constant light illumination at maximum intensity was applied from 180 min to 535 min. Temperature was measured in each Erlenmeyer during illumination and was shown to stay constant and equal to 37°C. The error bars represent the standard errors of 2 independent measurements.<br><br></p>
Line 133: Line 133:
<h4>Results</h4>
<h4>Results</h4>
-
<p align="center"><img src="https://static.igem.org/mediawiki/2013/2/26/Grenoble_recovery_graph.png" alt="results" width="600px"></p>
+
<p align="center"><img src="https://static.igem.org/mediawiki/2013/2/26/Grenoble_recovery_graph.png" alt="results" width="700px"></p>
<p id="legend">Figure 9.<br>OD610 <em>(A)</em> and Fluorescence <em>(B)</em> responses of a culture exposed to a 120 min constant light illumination (P = 0.03 µW/cm2). The illuminated sample is represented in red, the dark sample in blue. Error bars represent the standard errors of duplicates.<br><br></p>
<p id="legend">Figure 9.<br>OD610 <em>(A)</em> and Fluorescence <em>(B)</em> responses of a culture exposed to a 120 min constant light illumination (P = 0.03 µW/cm2). The illuminated sample is represented in red, the dark sample in blue. Error bars represent the standard errors of duplicates.<br><br></p>
Line 143: Line 143:
                                         In these experiments we simply put an additional light source inside the incubator in order to illuminate two cultures at once, at 100% and 50% light intensity respectively. The light sources were switched on 195 minutes after inoculation, until the end of the kinetic experiment (600 min). Another sample of KillerRed-expressing M15 bacteria was kept in the dark, as a negative control. Results of OD610 and fluorescence measurements are shown in Fig 10.<br><br></p>
                                         In these experiments we simply put an additional light source inside the incubator in order to illuminate two cultures at once, at 100% and 50% light intensity respectively. The light sources were switched on 195 minutes after inoculation, until the end of the kinetic experiment (600 min). Another sample of KillerRed-expressing M15 bacteria was kept in the dark, as a negative control. Results of OD610 and fluorescence measurements are shown in Fig 10.<br><br></p>
-
                                         <p align="center"><img src="https://static.igem.org/mediawiki/2013/9/9d/Grenoble_Intensity_Graph_%282%29.png" alt="" width="600px"></p>
+
                                         <p align="center"><img src="https://static.igem.org/mediawiki/2013/9/9d/Grenoble_Intensity_Graph_%282%29.png" alt="" width="700px"></p>
                                         <p id="legend">Figure 10.<br>OD610 <em>(A)</em> and fluorescence (630 nm) <em>(B)</em> as a function of time for 3 different bacterial cell samples, under different light conditions. The sample kept in the dark is represented in blue, the ones illuminated at 50 and 100% of the maximal intensity (Imax) in red and green, respectively. The light sources were switched on 195 min after inoculation, until the end of the experiment. Illuminated samples displayed similar fluorescence/OD610 ratios at time point 240 min (4945+/-49 RFU and 4465+/-182 RFU for 0.5*Imax and Imax, respectively). Error bars represent standard errors of duplicates.<br><br></p>
                                         <p id="legend">Figure 10.<br>OD610 <em>(A)</em> and fluorescence (630 nm) <em>(B)</em> as a function of time for 3 different bacterial cell samples, under different light conditions. The sample kept in the dark is represented in blue, the ones illuminated at 50 and 100% of the maximal intensity (Imax) in red and green, respectively. The light sources were switched on 195 min after inoculation, until the end of the experiment. Illuminated samples displayed similar fluorescence/OD610 ratios at time point 240 min (4945+/-49 RFU and 4465+/-182 RFU for 0.5*Imax and Imax, respectively). Error bars represent standard errors of duplicates.<br><br></p>

Revision as of 19:16, 4 October 2013

Grenoble-EMSE-LSU, iGEM


Grenoble-EMSE-LSU, iGEM

Retrieved from "http://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Biology"