Team:Grenoble-EMSE-LSU/Project/Instrumentation/Fluo

From 2013.igem.org

(Difference between revisions)
Line 69: Line 69:
                                 <li>
                                 <li>
<h2 id="Fluo">Fluorescence Measurement</h2>
<h2 id="Fluo">Fluorescence Measurement</h2>
-
                                         <p>For the proof of concept of the optical part we use a LED lamp - MR16 (GU5.3)- and a cube filter from a fluorescence microscope with excitation and emission filters and an adjustable lens. The LED lamp was chosen so that we didn't have to buy high-power LEDS and build a card with heat sinks. This lamp illuminates with 520 lumens in a 40° cone under 12V and 6W. The low voltage was chosen as a safety measure and the small angle to avoid losing too much light. The excitation filter is a green interferential filter to excite the red fluorescent protein and the red emission filter is only a colored filter to collect all the red light in order to have a more precise measure. In the cube there is also a dichroic mirror that reflects all the green light and transmits all the red light. This mirror enables us to separate the photodiode from the light source completely.</br></br></p>
+
                                         <p>For the proof of concept of the optical part we use a LED lamp - MR16 (GU5.3)- and a cube filter from a fluorescence microscope with excitation and emission filters and an adjustable lens. The LED lamp was chosen so that we didn't have to buy <strong>high-power LEDS</strong> and build a <strong>card with heat sinks</strong>. This lamp illuminates with <strong>520 lumens in a 40° cone under 12V and 6W</strong>. The low voltage was chosen as <strong>a safety measure</strong> and the small angle to <strong>avoid losing too much light</strong>. The excitation filter is a <strong>green interferential filter</strong> to excite the red fluorescent protein and the <strong>red emission filter</strong> is only a colored filter to collect all the red light in order to have a more precise measure. In the cube there is also a <strong>dichroic mirror</strong> that reflects all the green light and transmits all the red light. This mirror enables us to <strong>separate the photodiode from the light source completely</strong>.</br></br></p>
                                         <p align="center"><img src="https://static.igem.org/mediawiki/2013/c/ca/Optique.png" alt="Fluorometer_igem2013_Grenoble-EMSE-LSU" width="600px" /></p>
                                         <p align="center"><img src="https://static.igem.org/mediawiki/2013/c/ca/Optique.png" alt="Fluorometer_igem2013_Grenoble-EMSE-LSU" width="600px" /></p>
                                         <p id="legend"><strong><em>TALKE'coli: C2M part</em></strong><br>
                                         <p id="legend"><strong><em>TALKE'coli: C2M part</em></strong><br>

Revision as of 14:08, 4 October 2013

Grenoble-EMSE-LSU, iGEM


Grenoble-EMSE-LSU, iGEM

Retrieved from "http://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Instrumentation/Fluo"