Team:Lethbridge

From 2013.igem.org

(Difference between revisions)
Line 1: Line 1:
{{TeamLethbridgeHead}}
{{TeamLethbridgeHead}}
<div style="background-color:#FFFFFF; color:white">
<div style="background-color:#FFFFFF; color:white">
-
<html>
+
<html><br>
<center><a href="http://2013.igem.org/Team:Lethbridge/project"><image src="http://2013.igem.org/wiki/images/0/05/ULeth2013iGEM_Mainpage_PKFig.png" width="750px" height="500px"/></a></center>
<center><a href="http://2013.igem.org/Team:Lethbridge/project"><image src="http://2013.igem.org/wiki/images/0/05/ULeth2013iGEM_Mainpage_PKFig.png" width="750px" height="500px"/></a></center>

Revision as of 02:04, 28 September 2013


Project Overview

The current growth in synthetic biology research promises more complex and useful engineered systems. However, increased complexity often requires more genetic material that can be difficult to introduce into organisms. We propose the development of a new library of regulatory gene expression elements that allow for compression of multiple coding sequences into a smaller amount of genetic space. Using a pseudoknot RNA structural motif, commonly used by viruses to minimize their genome size, we will show the utility of dual-coding gene sequences to give useful protein products whose expression can be regulated by the pseudoknot’s ability to induce ribosomal frameshifting. A software tool will also be used to zip multiple coding sequences into different reading frames. Ultimately, this library of standardized parts will be available for use in a variety of engineered systems requiring minimal coding space and multiple protein expression.


WHAT?
  • Our project is directed towards standardizing pseudoknots to make a new class of parts available to the synthetic biology community

WHY?
  • As the field of synthetic biology grows, so should its toolset. By introducing a standardized method of implementing programmed ribosomal frameshifts in synthetic gene networks, we could not only enable others to reduce plasmid size and regulate operon expression, but also enable them to come up with new, exciting applications

HOW?
  • We have brought pseudoknots to the iGEM community by:
    • Characterizing their function in a biobrick system
    • Designing software that enables others to dual code proteins
    • Ensuring that the release of these tools to the wider public does not pose a significant risk to the rest of the world

Sponsors