Team:Penn/Project

From 2013.igem.org

(Difference between revisions)
(Created page with "<!-- *** What falls between these lines is the Alert Box! You can remove it from your pages once you have read and understood the alert *** --> <html> <div id="box" style="widt...")
 
(121 intermediate revisions not shown)
Line 1: Line 1:
-
<!-- *** What falls between these lines is the Alert Box!  You can remove it from your pages once you have read and understood the alert *** -->
+
<html lang="en">
 +
<head>
 +
    <title>modeling</title>
 +
      <link href="https://googledrive.com/host/0B4ZBZOYYKBzEVHRaZEdUVGo5cjA" type="text/css" rel="stylesheet"/>
 +
    <script src="https://googledrive.com/host/0B4ZBZOYYKBzETkFqdnhMeV9fMzA" ></script>
 +
    <script src="https://googledrive.com/host/0B4ZBZOYYKBzEZTdBSFdUV19LYjQ" type="text/javascript"></script>
 +
<script src="https://googledrive.com/host/0B4ZBZOYYKBzEblVWdXkta245Y0k/" type="text/javascript"> </script> <!--javascript-->
 +
<script>
 +
        $(document).ready(function($) {
-
<html>
+
/*load in the sidebar*/
-
<div id="box" style="width: 700px; margin-left: 137px; padding: 5px; border: 3px solid #000; background-color: #fe2b33;">
+
$('.left_wrap').load('https://googledrive.com/host/0B4ZBZOYYKBzEclFHMmpZcVlydmc');
-
<div id="template" style="text-align: center; font-weight: bold; font-size: large; color: #f6f6f6; padding: 5px;">
+
-
This is a template page. READ THESE INSTRUCTIONS.
+
-
</div>
+
-
<div id="instructions" style="text-align: center; font-weight: normal; font-size: small; color: #f6f6f6; padding: 5px;">
+
-
You are provided with this team page template with which to start the iGEM season. You may choose to personalize it to fit your team but keep the same "look." Or you may choose to take your team wiki to a different level and design your own wiki. You can find some examples <a href="https://2008.igem.org/Help:Template/Examples">HERE</a>.
+
-
</div>
+
-
<div id="warning" style="text-align: center; font-weight: bold; font-size: small; color: #f6f6f6; padding: 5px;">
+
-
You <strong>MUST</strong> have all of the pages listed in the menu below with the names specified.  PLEASE keep all of your pages within your teams namespace. 
+
-
</div>
+
-
</div>
+
-
</html>
+
-
<!-- *** End of the alert box *** -->
+
          });
 +
    </script>   
 +
<style>
 +
           
 +
       
 +
   
 +
       
 +
    </style>
 +
</head>
 +
<body>
 +
<img src="http://upload.wikimedia.org/wikipedia/en/d/d6/IGEM_official_logo.png" id="igem"/><!--igem logo-->
 +
<img src="http://collegediabetesnetwork.org/wp-content/uploads/2012/07/UPenn_logo1.png" id="penn"/> <!--penn logo-->
 +
  <div class="left_wrap">
 +
    </div> </div>
 +
  <div class="section1" style="background-position: top;">
 +
        <div class="text">
 +
            <b><center><h1>
 +
Project Description
 +
</b></center></h1>
 +
<br>
 +
The code of life is more than a sequence of A’s, C’s, T’s and G’s; epigenetic modifications, such as DNA methylation, are powerful and heritable regulators of gene expression. Targeted methyltransferases are enzymes that catalyze sequence-specific methylation – the most useful tool for engineering the epigenome. With a synthetic biology approach, we developed an assay to test targeted methyltransferases without expensive, time-consuming traditional methods. Our modular single-plasmid system allows methyltransferases to be easily cloned and tested via inexpensive digestion assays, quickly measuring the existence and extent of targeted methylation. Additionally, our plasmid contains standardized primer-binding sites for methylation-sensitive sequencing, and our E. coli chassis effectively eliminated noise associated with methylation studies. We are using this assay to characterize our novel targeted methyltransferases, which could be used to study epigenetic modifications. In the future, synthetic biologists could embrace these tools to explore the next frontier in engineering biological systems: the epigenome.</center>
 +
<br><br>
-
{| style="color:#1b2c8a;background-color:#0c6;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="62%" align="center"
+
        </div>
-
!align="center"|[[Team:Penn|Home]]
+
    </div>
-
!align="center"|[[Team:Penn/Team|Team]]
+
   
-
!align="center"|[https://igem.org/Team.cgi?year=2013&team_name=Penn Official Team Profile]
+
-
!align="center"|[[Team:Penn/Project|Project]]
+
-
!align="center"|[[Team:Penn/Parts|Parts Submitted to the Registry]]
+
-
!align="center"|[[Team:Penn/Modeling|Modeling]]
+
-
!align="center"|[[Team:Penn/Notebook|Notebook]]
+
-
!align="center"|[[Team:Penn/Safety|Safety]]
+
-
!align="center"|[[Team:Penn/Attributions|Attributions]]
+
-
|}
+
-
 
+
 
-
 
+
</body>
-
 
+
<script>
-
== '''Overall project''' ==
+
</script>br/
-
 
+
</html>
-
Tell us more about your project.  Give us background.  Use this is the abstract of your project.  Be descriptive but concise (1-2 paragraphs)
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
== Project Details==
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
=== Part 2 ===
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
=== The Experiments ===
+
-
 
+
-
 
+
-
 
+
-
 
+
-
=== Part 3 ===
+
-
 
+
-
 
+
-
 
+
-
 
+
-
== Results ==
+

Latest revision as of 03:50, 28 September 2013

modeling

Project Description


The code of life is more than a sequence of A’s, C’s, T’s and G’s; epigenetic modifications, such as DNA methylation, are powerful and heritable regulators of gene expression. Targeted methyltransferases are enzymes that catalyze sequence-specific methylation – the most useful tool for engineering the epigenome. With a synthetic biology approach, we developed an assay to test targeted methyltransferases without expensive, time-consuming traditional methods. Our modular single-plasmid system allows methyltransferases to be easily cloned and tested via inexpensive digestion assays, quickly measuring the existence and extent of targeted methylation. Additionally, our plasmid contains standardized primer-binding sites for methylation-sensitive sequencing, and our E. coli chassis effectively eliminated noise associated with methylation studies. We are using this assay to characterize our novel targeted methyltransferases, which could be used to study epigenetic modifications. In the future, synthetic biologists could embrace these tools to explore the next frontier in engineering biological systems: the epigenome.

br/