Revision as of 12:02, 6 September 2013 by AlexBates (Talk | contribs)


For Plaque Specific Expression

In order to direct microglia activity to senile plaques , we needed to find a way to detect these plaques. Several possible routes were explored; initial focus was on a plaque binding protein, such as the B10 antibody (Haupt et al., 2011 []). However, there was no easy way for plaque binding to transduce changes in gene expression. Therefore, alternatives were explored, where plaque proximity could be indirectly detected via a proxy. One such proxy is oxidative stress - free radical production (Colton et al., 2000 []); microglia are naturally attracted to plaques, and upon reaching plaques, a standard immune response follows, which includes free radical production. Therefore, we have designed a promoter which will initiate transcription in response to the oxidative stress generated by native microglia and plaques already present in the brain.

This promoter is an improvement of a yeast minimal promoter (cyc100 []) already in the registry. Although from yeast, this parts of this promoter show homology to the consensus sequences of mammalian core promoter elements, notably the TATA box and initiator element (Sandelin et al., 2007 []). NF-κB is a transcription factor which translocates to the nucleus under oxidative stress (Shi et al., 2003 []), and binds to the sequence GGGAATTT (Park et al., 2009 []). Thus, by placing this site upstream of the yeast minimal promoter, we created a novel mammalian promoter which initiates transcription in response to oxidative stress.

To construct this, we firstly created a BioBrick which consists of 5 copies of the NF-κB binding site (5NFKB [link to parts page]). This was done using linkers [link to experiments, linker construction] - short overlapping primers were ordered, and allowed to anneal, and then ligated together.