Team:UCLA

From 2013.igem.org

(Difference between revisions)
(Undo revision 179329 by Michaelc1618 (talk))
Line 41: Line 41:
  text-align: center; line-height: 180%; margin: 10px 5px auto 40px
  text-align: center; line-height: 180%; margin: 10px 5px auto 40px
}
}
-
#slide-title {
 
-
font-size: 25px; font-family: "Trebuchet MS", sans-serif; color: #000;
 
-
text-align: left; line-height: 180%; margin: 0px 5px auto 0px
 
-
 
#content {
#content {
       background: none;
       background: none;
Line 57: Line 53:
<a href="#slide2">slide 2</a></div></section>
<a href="#slide2">slide 2</a></div></section>
<section id="slide2" data-type="background" data-speed="20"><a name="slide2"></a>  
<section id="slide2" data-type="background" data-speed="20"><a name="slide2"></a>  
-
<div id="slide-title"> how does this work?</div> <br> Blah blah blah<img src="https://static.igem.org/mediawiki/2013/0/0a/Libgen1.png"></section>
+
TEST TEST TEST TEST</section>
</body>
</body>
</html>
</html>

Revision as of 05:32, 27 September 2013


UCLA iGEM

ABSTRACT
Both the mammalian immune system’s complex defenses and a bacteriophage’s targeting mechanism depend upon protein diversification. These models have inspired innovations ranging from targeted drug delivery to protein display. Using the major tropism determining (MTD) protein expressed on the Bordatella bacteriophage BPP-1, we aim to develop an in vitro system for generating antibody-like proteins that bind specified targets. The MTD protein expressed at the phage’s tail fiber is naturally modified at its variable region to produce nearly 10e13 possible binding variants while preserving its structure. Mutating the MTD’s variable region by PCR can match the massive diversity of MTD in vitro. A library of MTD protein-DNA fusions generated by mRNA display can then be screened for binding against specified protein targets. This in vitro analog to phage display and immune clonal selection can be a powerful tool for constructing target-binding MTD variants with equally many varied applications. slide 2
TEST TEST TEST TEST