Team:UNITN-Trento/Extra/Fruit Info

From 2013.igem.org

(Difference between revisions)
(Undo revision 183873 by Xli (talk))
 
(9 intermediate revisions not shown)
Line 1: Line 1:
-
<!--NEW PAGE-->
 
{{:Team:UNITN-Trento/Templates/Default|<html><!--start content-->
{{:Team:UNITN-Trento/Templates/Default|<html><!--start content-->
<!--CSS-->
<!--CSS-->
-
<link rel="stylesheet" href="https://2013.igem.org/wiki/index.php?title=Team:UNITN-Trento/CSS/Project_pages&action=raw&ctype=text/css" type="text/css" />
+
<link rel="stylesheet" href="https://2013.igem.org/wiki/index.php?title=Team:UNITN-Trento/CSS/Project_pages&amp;action=raw&amp;ctype=text/css" type="text/css">
-
<link rel="stylesheet" href="https://2013.igem.org/Team:UNITN-Trento/CSS/Extra/Fruit_Info?action=raw&ctype=text/css" type="text/css" />
+
<link rel="stylesheet" href="https://2013.igem.org/Team:UNITN-Trento/CSS/Extra/Fruit_Info?action=raw&amp;ctype=text/css" type="text/css">
-
 
+
<!--JS-->
<!--JS-->
-
<script src="https://2013.igem.org/wiki/index.php?title=Team:UNITN-Trento/JS/Project_pages&action=raw&ctype=text/javascript"></script>
+
<script src="https://2013.igem.org/wiki/index.php?title=Team:UNITN-Trento/JS/Project_pages&amp;action=raw&amp;ctype=text/javascript" type="text/javascript"></script>
<!--PAGE-->
<!--PAGE-->
-
<div class="container" style="background-color:rgb(155, 78, 0)!important;">
+
<div class="container">
-
<div class="sheet">
+
    <div class="sheet">
-
<h3>
+
        <span class="tn-title">Fruit Info</span>
-
Do you know how plants produce ethylene?
+
 
-
</h3>
+
        <span class="tn-subtitle">Do you know that fruit is generally classified in two main categories?</span>
-
<img src="https://static.igem.org/mediawiki/2013/b/bb/Tn-2013-project_ethylene-Plants_path.jpg" style="width: 90%;"/>
+
        <p>
-
<p>
+
            Fruit is generally classified in two main groups: climacteric and non-climacteric.
-
Plants naturally produce ethylene starting from a common amino acid: methionine (MET), which is transformed in S-adenosyl-methionine (SAM) by a reaction catalyzed by SAM synthetase. The key enzyme of the pathway, ACC synthase, converts SAM to 1-aminocycloprane-1-carboxylic acid (ACC), the immediate precursor of ethylene. Quite recently, the final enzyme of the pathway was identified: ACC oxidase, which converts ACC to ethylene.
+
        </p>
-
</p>
+
 
 +
        <span class="tn-sub-subtitle">Climacteric fruit:</span>
 +
        <p>
 +
            Some examples are: apples, bananas, pears, melons, apricoats and tomatoes.<br>
 +
            This kind of fruit presents a characteristic climacteric peak, which consists in an acceleration of both cellular respiration and ethylene production. Depending on the fruit, ethylene can influence all the different steps of the ripening process like colour, pulp texture, flavour... Exogenous ethylene treatment can have an effect on these fruit before the climacteric peak.
 +
        </p>
 +
 
 +
        <span class="tn-sub-subtitle">Non-climacteric:</span>
 +
        <p>
 +
            Some examples are: strawberries, citrus, oranges, cherries and grapes.<br>
 +
            This type of fruit have a constant low endogenous production of ethylene with no climacteric peak. Non-climacteric fruit do not respond to exogenous ethylene treatment except for in term of degreening and they should be picked up only when completely ripened in order to mantain all the flavour quality <span class="tn-ref">(Mary Lu Arpaia et Al., Fruit Ripening &amp; Ethylene Management 2010, 3-10)</span>.
 +
        </p>
 +
 
 +
        <div id="jms-slideshow" class="jms-slideshow" style="height:250px !important;">
 +
            <div id="step-1" style="height:390px !important;" class="step" data-x="0">
 +
                <img style="width:100% !important;" src="https://static.igem.org/mediawiki/2013/3/38/Climacteric.jpg">
 +
            </div>
 +
            <div id="step-2" style="height:390px !important;" class="step" data-x="500">
 +
                <img style="width:100% !important;" src="https://static.igem.org/mediawiki/2013/5/51/Tn-2013Non_climacteric.jpg">
 +
            </div>
 +
        </div>
-
<p></p>
+
        <span class="tn-subtitle">Do you know how plants produce ethylene?</span>
 +
        <img class="no-border no-bottom" src="https://static.igem.org/mediawiki/2013/b/bb/Tn-2013-project_ethylene-Plants_path.jpg" />
 +
        <p>
 +
            Plants naturally produce ethylene starting from a common amino acid: methionine (MET), which is transformed in S-adenosyl-methionine (SAM) by a reaction catalyzed by SAM synthetase. The key enzyme of the pathway, ACC synthase, converts SAM to 1-aminocycloprane-1-carboxylic acid (ACC), the immediate precursor of ethylene. Quite recently, the final enzyme of the pathway was identified: ACC oxidase, which converts ACC to ethylene.
 +
        </p>
-
<h3>
+
        <span class="tn-subtitle">Do you know that ethylene is used commercially to ripen some fruits before they enter the market?</span>
-
Do you know that ethylene is used commercially to ripen some fruits before they enter the market?
+
        <p>
-
</h3>
+
            All fruit, with a few exceptions (European pears, avocados and bananas), reach their best eating quality when allowed to ripen on the tree or plant. However, some fruits are usually picked mature but unripe, and treated with ethylene during transportation or once arrived at destination, before being brought to the market. Bananas for example are threated with 10 to 200 ppm of ethylene to trigger the ripening process. This approach allows long term storage of fruit and helps the distributors to bring fruit to the consumer.
-
+
        </p>
-
<p>
+
    </div>
-
All fruits, with a few exceptions (European pears, avocados and bananas), reach their best eating quality when allowed to ripen on the tree or plant. However, some fruits are usually picked mature but unripe, and threated with ethylene during transport or when they arrive at destination, before being brought to the market. Bananas for example are threated with 10 to 100 ppm of ethylene to trigger the ripening process. This aproach allows long term storage of fruit and helps the distributors to bring fruit to the consumer.  
+
-
</p>
+
-
<h3>
+
    <div class="sheet-2">
-
Do you know that fruit is generally classified in two main categories?
+
        <a href="https://2013.igem.org/Team:UNITN-Trento/Attributions">
-
</h3>
+
            <img class="tn-arr-prev" src="https://static.igem.org/mediawiki/2013/6/6a/Tn-2013-arr-FRINFO_prev.png" />
-
+
        </a>
-
<p>
+
        <a href="javascript:toTop('#tn-main-wrap-wrap');">
-
Fruit is generally classified in two main groups: climacteric and non-climacteric. <br/>
+
            <img src="https://static.igem.org/mediawiki/2013/6/6e/Tn-2013-arr-AAA_TOP.png" />
-
<span class="tn-sub-subtitle">Climacteric fruit:</span><br/>
+
        </a>
-
i.e. Apples, bananas, pears, melons, apricoats and tomatoes.<br/>  
+
        <a href="https://2013.igem.org/Team:UNITN-Trento/Human_Practice">
-
This kind  of fruit presents a characteristic climacteric peak, which consists in an acceleration of both cellular respiration and ethylene production. Depending on the fruit, ethylene can influence all the different steps of the ripening process like colour, pulp texture, flavour... Exogenous ethylene treatment can have an effect on these fruit before the climacteric peak.
+
            <img class="tn-arr-next" src="https://static.igem.org/mediawiki/2013/4/44/Tn-2013-arr-FRINFO_next.png" />
 +
        </a>
 +
    </div>
 +
</div>
-
<span class="tn-sub-subtitle">Non-climacteric:</span><br/>
 
-
i.e. Strawberries, citrus, oranges, cherries and grapes. <br/>
 
-
This type of fruit have a constant low endogenous production of ethylene with no climacteric peak. Non-climacteric fruit do not respond to exogenous ethylene treatment except for in term of degreening and they should be picked up only when completely ripened in order to mantain all the flavour quality.
 
-
</p>
 
-
<div id="jms-slideshow" class="jms-slideshow" style="height:250px !important;">
 
-
    <div id="step-1" style="height:390px !important;" class="step" data-x="0">
 
-
    <img style="width:100% !important;" src="https://static.igem.org/mediawiki/2013/3/38/Climacteric.jpg" />
 
-
    </div>
 
-
    <div id="step-2"  class="step" data-x="500">
 
-
    <img style="width:100% !important;" src="https://static.igem.org/mediawiki/2013/5/51/Tn-2013Non_climacteric.jpg" />
 
-
    </div>
 
-
 
 
-
</div>
 
-
</div>
 
-
</div>
 
<!--end content--></html>|<html>https://static.igem.org/mediawiki/2013/e/ef/Tn-2013-headerbg-Sfondogr2.jpg</html>|<html>https://static.igem.org/mediawiki/2013/5/52/Tn-2013-headerbg-Sfondogr2_OR.jpg</html>}}
<!--end content--></html>|<html>https://static.igem.org/mediawiki/2013/e/ef/Tn-2013-headerbg-Sfondogr2.jpg</html>|<html>https://static.igem.org/mediawiki/2013/5/52/Tn-2013-headerbg-Sfondogr2_OR.jpg</html>}}

Latest revision as of 12:29, 15 October 2013

Fruit Info Do you know that fruit is generally classified in two main categories?

Fruit is generally classified in two main groups: climacteric and non-climacteric.

Climacteric fruit:

Some examples are: apples, bananas, pears, melons, apricoats and tomatoes.
This kind of fruit presents a characteristic climacteric peak, which consists in an acceleration of both cellular respiration and ethylene production. Depending on the fruit, ethylene can influence all the different steps of the ripening process like colour, pulp texture, flavour... Exogenous ethylene treatment can have an effect on these fruit before the climacteric peak.

Non-climacteric:

Some examples are: strawberries, citrus, oranges, cherries and grapes.
This type of fruit have a constant low endogenous production of ethylene with no climacteric peak. Non-climacteric fruit do not respond to exogenous ethylene treatment except for in term of degreening and they should be picked up only when completely ripened in order to mantain all the flavour quality (Mary Lu Arpaia et Al., Fruit Ripening & Ethylene Management 2010, 3-10).

Do you know how plants produce ethylene?

Plants naturally produce ethylene starting from a common amino acid: methionine (MET), which is transformed in S-adenosyl-methionine (SAM) by a reaction catalyzed by SAM synthetase. The key enzyme of the pathway, ACC synthase, converts SAM to 1-aminocycloprane-1-carboxylic acid (ACC), the immediate precursor of ethylene. Quite recently, the final enzyme of the pathway was identified: ACC oxidase, which converts ACC to ethylene.

Do you know that ethylene is used commercially to ripen some fruits before they enter the market?

All fruit, with a few exceptions (European pears, avocados and bananas), reach their best eating quality when allowed to ripen on the tree or plant. However, some fruits are usually picked mature but unripe, and treated with ethylene during transportation or once arrived at destination, before being brought to the market. Bananas for example are threated with 10 to 200 ppm of ethylene to trigger the ripening process. This approach allows long term storage of fruit and helps the distributors to bring fruit to the consumer.