Team:UNITN-Trento/Project/Methyl Salicylate

From 2013.igem.org

(Difference between revisions)
Line 10: Line 10:
<span class="tn-title">Results - Methyl Salicylate </span>
<span class="tn-title">Results - Methyl Salicylate </span>
<p>
<p>
-
It was difficult to find a volatile molecule that could be enzymatically produced by a bacterium and also demonstrated to be an efficient ripening inhbitor. There were not many candidates to choose from and after a long search we chose methyl salicylate (MeSA). Previous publications suggested that MeSA could inhibit the ripening of either kiwifruit and tomatoes, at a concentration of  0.5 mM <span class="tn-ref"> (The dual effects of methyl salicylate on ripening and expression of ethylene biosynthetic genes in tomato fruit. Ding, C. and Wang, Y. 164, 2003, Plant Science, pp. 589-596.) (Aghdam, M., et al. Methyl Salicylate Affects the Quality of Hayward Kiwifruits during. Journal of Agricultural Science. June 2011, Vol. 3, 2, pp. 149-156.) </span) 
+
It was difficult to find a volatile molecule that could be enzymatically produced by a bacterium and also demonstrated to be an efficient ripening inhbitor. There were not many candidates to choose from and after a long search we chose methyl salicylate (MeSA). Previous publications suggested that MeSA could inhibit the ripening of either kiwifruit and tomatoes, at a concentration of  0.5 mM  
</p>
</p>
<p>
<p>

Revision as of 21:35, 28 September 2013

Results - Methyl Salicylate

It was difficult to find a volatile molecule that could be enzymatically produced by a bacterium and also demonstrated to be an efficient ripening inhbitor. There were not many candidates to choose from and after a long search we chose methyl salicylate (MeSA). Previous publications suggested that MeSA could inhibit the ripening of either kiwifruit and tomatoes, at a concentration of 0.5 mM

Fortunately many of the needed parts were already available because of the work of the MIT iGEM 2006 team (Eau de Coli).

< img id="mesapath" style=" margin-bottom: 1em;" src="http://2013.igem.org/wiki/images/d/dd/Tn-2013_MeSA_path.jpg" />

We modified and improved these parts and resubmitted them to the registry, as they were not available in pSB1C3.

MeSA detection

To have a quantitative analysis we used a Finnigan Trace GC ULTRA with a flame ionization detector (FID) that allowed us to detect ions formed during MeSA combustion in a hydrogen flame. The generation of this ions is proportional to MeSA concentration in the sample stream. A calibration curve was initially created using samples with a well known pure MeSA concentration (0 mM, 0.2 mM, 0.5 mM, 1.0 mM, 2 mM).