Team:USTC CHINA/Project/Background

From 2013.igem.org

Revision as of 17:50, 27 September 2013 by NanoWu (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Background

ONE:Why We Want to Design T-Vaccine?

In our world, billions of people suffer from contagion, however, only part of them can be prevented by proper vaccine. Many disadvantages limit the usage of traditional vaccine especially in developing countries.

the Comparison of Different Vaccine Delivery Ways

So the key to solve these problems is to create a new way to both decrease the cost and deliver vaccine harmlessly. That is what we are working for, T-Vaccine.

TWO:What We Are Trying To Do.

This year, our project focused on a revolutionary vaccine delivery. We chose bacillus subtilis as chassis to establish a transdermal vaccine fresh secreting band-aid which consists of four engineering b.subtilis, each of them carries a gene circuit independently. By using an excellent transdermal peptide TD1, three of them could express a serious of fusion proteins(antigen, 2 kinds of adjuvants) which could penetrating the skin and work as traditional vaccine molecule. The fourth type of them is our “reporter” which could notify users whether the band-aid works well and when they could stick or tear off the patch. Moreover we designed a reliable suicide system in bacillus subtilis for the very first time in iGEM. So it would be OK if our users tear patches off and throw them away. Cheap and convenient, we just create a world without needle.

THREE:How Can We Make it?

1. Everything was So Naive Before We Found TD1.

When this idea first stroke us, it seemed amazing that our dream is so naïve and unpractical. Above all, how can we make antigen get through the skin barrier? We refer to various transdermal methods, like Iontophoresis, Sonophoresis, Microneedle. They require special equipment and deal damage to skin. Our idea remained unrealistic until we find Transdermal peptide 1.

TD-1 is an eleven amino acid peptide, which can greatly facilitate macromolecule transdermal delivery through intact skin. This was first discovered by professor Wen Longping in our university and the results were published on Nature biotechnology.

TD1 Sequence
Title of Nature Letter About TD1

2. the Principle of TD1:

The biggest challenge of penetrating the skin is epidermis of skin barrier. Traditional transdermal methods have to break the epidermis, though it maybe painless, the injury still have the potential of infection. On the contrary, TD1 is painless and harmless to skin, it could open the skin channels shortly, so not only molecules but also filobactivirus could penetrate the skin and go into the blood circulation system.

Filamentous Phage
Skin
eGFP Transdermal

References

1. ...
2. ....