Team:Uppsala/project

From 2013.igem.org

Revision as of 19:44, 27 October 2013 by Amaron (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Project Background

Malnutrition, a global problem

When we hear about starvation we usually think in terms of a lack of food. People simply do not get enough calories to sustain themselves and starvation ensues. But there is an equally large but hidden problem of malnutrition. Even if you get the right amount of calories, if these do not contain sufficient amounts of the right micronutrients, serious illness and even death can be the result. Vitamin A deficiencies is solely the cause of blindness in 2.8 million children under the age of 5 year and also increases the chance of disease and death from severe infection.[1,2]

Figure 1. FAO hunger map 2012. Total population of undernourished people in the world 2012.[3]


What does malnutrition have to do with probiotics?

Bacteria have historically had a bad reputation in the public consciousness. They are mainly associated with illness and disease. However bacteria are vital for our well-being and survival. Especially in the digestive system they play a crucial role in digestion, synthesis of nutrients and keeping other pathogenic bacteria in check. These are so called probiotic bacteria. They depend on their host but also contribute to its health. This ability to synthesise many essential micronutrients is a great opportunity for the synthetic biology community. So, how can we harness the positive potential of this human-bacteria relationship to solve the problem of malnutrition?

Vision

A new way of food production

This year iGEM Uppsala will create genetically engineered super-food . Why?
Imagine a future where we can produce all of our nutrients in one bacteria. A bacteria that can be grown on any substrate, in any region in the world. A bacteria that is also healthy for our well-being and our gut flora. A bacteria that is genetically modified, so that it produces healthy nutrients directly in our food. Why not use the possibilities of our already mutual relationship with probiotic bacteria? Probiotic bacteria is a natural part of our daily life and consumption, so it is a natural choice for food engineering.
This is exactly what we will be doing. We will make probiotic bacteria produce healthy nutrients, directly in our food.

Advantages of using probiotic bacteria

We wanted to make a project that uses the potential of synthetic biology, something that is not achievable with other methods. So we asked ourselves, why is a probiotic bacteria better then already existing methods for nutrition production? With our solution, we can:

  • Eliminate the need for extraction and purification of nutritious compounds from different biomateria.
  • Directly produce all nutrients in one food item.
  • Grow our nutrients on any substrate, anywhere in the world.

How will we achieve this?

For this, we choose to work with the probiotic lactobacillus species . We have two major goals this year. One is to genetically engineer this probiotic bacteria, and make it available for the iGEM community with new standard parts . We are making the new standard probiotic chassi for iGEM. The second is to use our new standard parts, and make lactobacillus produce our nutrients with metabolic engineering. We will make the bacteria produce vital beta-carotene and the commercial and public attractive antioxidant resveratrol . Also we want to add different tastes, like saffron . And why not also produce the natural "sweetener", miraculin , directly in the bacteria? These are some of the compounds we will try to express in our probiotics. For this second part, we will both design new biobricks, and improve on already existing biobricks.

Future of synthetic biology and food production

Will the world accept our genetically engineered food and the future of synthetic biology? Will it be safe to drink genetically engineered bacteria? Hopefully our project will open the eyes of people, and show humanity what is achievable with synthetic biology.

References:

[1] http://www.nature.com/ejcn/journal/v57/n1s/full/1601820a.html
[2] http://www.who.int/nutrition/topics/vad/en/index.html
[3] http://www.fao.org/fileadmin/templates/ess/documents/food_security_statistics/FAO_Hunger__Map_2013_WFS.pdf