GREEN is the new BLACK TEAM MACQUARIE 2013 • In 2009 Australia relied on non-renewable energy from fossil fuels for 95% of its energy needs - 41% coal, 36% oil and 19% gas attributed to this. Successful production of chlorophyll in a bacterial host is the first step towards the synthetic construction of photosystem II, and the eventual creation of a new renewable energy source • Our project aimed to express the thirteen genes (from Chlamydomonas reinhardtii) necessary for the chlorophyll biosynthesis pathway in

Background

a bacterial host (Escherichia coli)

Chlorophyll Synthesis

Pathway

3. Chlorophyll a

ChIP - BBa_K1080008 DVR1 - BBa_K1080012 ChIG - BBa_K1080009

- Chlorophyll is the green pigment responsible for the absorption and transfer of light energy
- During photosynthesis, light energy is converted into chemical energy: 6CO2 + 6H2O - C6H12O6 + 6O2

Protoporphyrin IX

Mg-Protoporphyrin IX

Mg-Proto ME

Protochlorophyllide

Chlorophyll a

Plastocvanin + YCF54

DVR₁

ChIH are subunits

Gun4 is cofactor

Results and Characterisation

Gene Sequencing Results - All of our genes were assembled correctly from gBlocks, all our sequencing results were submitted, and came back with an identity match of 100%

Composite parts: Tac promoter BBa_K864400 was successfully ligated with the genes: ChID, Chll1, Chll2, Gun4, and Plastocyanin for further characterisation

ChID activity assay:

Mg-protoporphyrin IX formation over time (Fluorescence Ex420nm Em590nm)

ChID expressing *E. coli* extracts

fluorescence The increasing shows Mg-protoporphyrin signal indicating a complex formation containing functional ChID has formed

FEBS letters 586 (3), 205-210)

ChID from the extract was used to

form the magnesium chelatase

complex with purified Chl11, Chl12,

ChlH and GUN4 (Zhou et al. 2010

• 1μL of cell extract had 2.1ng of active ChID protein

• C. reinhardtii is an algae that synthesises Chlorophyll α from

A branch in the heme synthesis pathway will allow the use of

protoporphyrin IX through a multistep pathway

E. coli as an expression host to create chlorophyll

• E.coli uses protoporphyrin IX in the production of heme

- Plastocyanin produces a copper chelated protein
- When exposed to an inducer and copper E.coli expressing this gene will turn blue (right plate)

Conclusion

- Successfully constructed 12 BioBricks
- Designed 3 operons necessary for chlorophyll biosynthesis
- Improved understanding on how to manipulate plant genes
- Initiated reproduction of photosystem II to act as a cheap and efficient renewable green energy source
- New sources of electrons and hydrogen gas to combat the energy crisis

Human Practices

Australasian Conference of Undergraduate Research

 Winner- Best Presentation in Molecular Biology or Plant Science research

Education

- Presented 2nd year uni lecture on synthetic biology
- High school synthetic biology workshops

Synthetic Biology Conference

Organised first conference in Southern hemisphere

Synthetic Biology Society

Initiators of SynBioNet Society

Quarantine

 Recommendations for easy access to information on international standards for shipping regulations

University Open Day

 Organised a variety of laboratory activities for members

of the public

Collaboration With Sydney Uni iGEM Helped promote the Strange Nature writing

Mentor program

competition

