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Experimental approach modeling and statistic
For better interpretation of our experimental data we utilized the software  

Statistica version 7.0, using the Central Composite Design (CCD).

1. Central Composite Design 
A Central Composite Design to k factors, codified as (x1, ...., xk), is formed in 

three parts:

One called factorial (or cubic) containing a total of nfat coordinate points xi = -1 

ou xi = +1, for all i = 1 ..., k;

A axial part (or in star), formed by nax = 2k points with all coordinates null, but 

one,which is equal to a determined α value  (or -α);

A total of ncentr assays done in the central point, where x1 =....xk = 0 (Barros 

Neto, 1995).

To do the CCD, is needed to define how is going to be each part. One design 

with k = 3 is showed in the figure 3, where we can see the cubic, star and center point 

parts.

Figure 3 – CCD for three factors. (Barros Neto, 1995).

The cubic points are identical  likely a two-level factorial. The axial points are 

dependant of α value which can vary from 1 to k½. To choose the best α value we 

utilize the rotability concept as criteria. Following this concept, a feasible design  can 

be achieved if the estimative variance depends upon only on the distance to the central 

point. The mathematical criteria of rotability is that α = k¼. Therefore as seen in the 



table 1, the proposed CCD is a process (α = 3¼ = ±1,682), five assays in the central 

point can stabilize the variance in the previewed answer, giving a pure measuring error. 

Tabela 1 – Factorial CCD used.

Part of
Assay X1 X2 X3Design

Factorial

1 -1 -1 -1
2 1 -1 -1
3 -1 1 -1
4 1 1 -1
5 -1 -1 1
6 1 -1 1
7 -1 1 1
8 1 1 1

Axial

9 -1,682 0 0
10 1,682 0 0
11 0 -1,682 0
12 0 1,682 0
13 0 0 -1,682
14 0 0 1,682

Central
15 0 0 0
16 0 0 0
17 0 0 0

  18 0 0 0
  19 0 0 0

In the table 2 we describe the utilized factors with their respective values to the 

table 1.

Table 2 –Factors utilized in the CCD factorial with their respective levels.  

Factors

Chossed values
Levels from the statistic design



Minimum Maximum

-1,68 +1,68 -1,68 -1 0 +1 +1,68

Temperature(°

C) 25 40 25 28 32,5 37 40

pH 4,3 7,6 4,3 5 6 7 7,6

Oil 

concentration 

(%) 1,5 18,5 1,5 5 10 15 18,5

To optimize work (Table 3), as written in the item 3.5, we have made an 

experimental modeling using the factors pH, temperature and oil concentration, having 

as feedback the oil degradation rate in different conditions, randomly. 

The residual quadratic sum left by the model can be decomposed in two parts: 

one caused by random events, and other due to the lack of adjustments in the model. 

The term will give a random measurement of the error and can is called quadratic sum 

due to the pure error (SQep). The second part depends upon our model and follows the 

quadratic sum due to the lack of adjustment (SQfaj) (Barros Neto, 1995).

Dividing these quadratic sums by their degrees of freedom, we end up with the 

average in which values can be compared to evaluate the lack of model adjustment. We 

can use the test F in the ratio MQfaj/ MQep to evaluate IF the model is well suited to our 

observations. High values of MQfaj/ MQep indicate lack of adjustment showing that the 

model is not adequate (Barros Neto, 1995).

Tabela 3: Experimental variance analisys

Variation 
source

Quadratic 
sum

Degree of 
freedom

Quadratic 
average

Regressão 3805.69 1 3805.69
Resíduos 1166,04 17 68,58
Falta de ajuste 345,94 7 49,42
Erro puro 820,10 9 91,12
Total 4971,73 18
%  of explanation 76,54%
% explained variation 83,50%



The porcentage of explanation indicates how much of variation phenomena is 

explained while the explained variation percentage is how can it be explained by the 

proposed model (Barros Neto, 1995).

To validate the experimental we used the T (equation 1), where is observed that 

if the quadratic average of regression is very superior than the quadratic average of the 

residues then the the regression is significative and the model is valid.

Equation 1: T test: regression and residues 

As demonstrated in the table 5, there are variables pointing to the lack of experimental 
adjustments and pure error. On top of that we made the T test. As described in the 
equation 7, the quadratic average is lower than the experimental error quadratic average 
due to the lack of adjust, being the values relatively close, which shows is not possible 
to improve the model.  

Equation 2: T test analysis - lack of adjustment and pure error 

As the regression result, we obtained a quadratic equation that models the 

influence of pH (pH), temperature (temp) and oil concentration (oil) in the middle of the 

oil degradation rate (%Consumo):

oilpHoiltemppHtempoil
pHtempoilpHtempConsumo

.456,1.151,0.259,0305,0
059,3435,0111,6427,6629,31124,697%
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This equation can be better interpreted when analyzed through level-surface 

graphics. In the figure 8 we have the analysis of pH and temperature as the rate of 

consumption. In this graphic representation the more red is the region better are the 

results. As shown the high pH more narrow is the temperature we can work, while the 

oil degradation goes up significatively. 



Figure 4: pH X temperature in the oil degradation.

In the figure 5, we have as analysis point the relation between oil concentration 

and consumption rate. The temperature range is very large and the increase percentage 

of degradation is observed if only high concentrations of oil is present in the media. 

Figure 5: oil concentration X temperature affecting the degradation.

In the figure 6, we have points taking in account the oil concentration and 

pH affecting the oil consumption. The pH range is very broad and the increasing of 

degradation is noted only if there is high oil concentration in the media.



Figure 6: oil concentration X pH affecting used frying oil degradation.

After applying the equation we have the following best conditions to work: 

temperature 32,5°C, pH=6,00 and10% oil concentration.


