```
Algebra
with n linear equations, and m}<\textrm{n}\mathrm{ unknowns, at most m}\mathrm{ values are needed to solve
    - [linear coefficients] x [unknowns] = [non-homogenous constants]
    -[\mp@code{lnear coefficients] x [un}
Calculus
- order of n order differential = order of n order system of 1st order differentials
    - }\textrm{n}\mathrm{ values required for }\textrm{n}\mathrm{ order differential to solve
    - }\textrm{n}\mathrm{ values required for n order differential to solve
Mass Action
general n order system of 1st order differentials
```



```
    \cdotparameters 
            -a is an amount of rates changing }
            -b is a rate constan
            c is a number of different species involved
            -d is a species involved
            - }e\mathrm{ is a number of each species involved
            - fis a number of species d involved
            -g}\mathrm{ is a highest species involved
            - I is a rate order
            -m is the highest number of rates involved
            n}\mathrm{ is the number of species
    general rate equation
    \sum n}\mp@subsup{r}{i=1}{n}=\mp@subsup{\sum}{l=0}{o}\mp@subsup{\sum}{i=1}{n}\mp@subsup{r}{lij}{}\leq
    dx di}dt=\mp@subsup{\sum}{j=1}{m}(\mp@subsup{p}{ij}{}-\mp@subsup{r}{ij}{})\mp@subsup{c}{j}{}\mp@subsup{\prod}{k=1}{n}\mp@subsup{x}{k}{rkj}=\mp@subsup{\sum}{l=0}{o}\mp@subsup{\sum}{j=1}{m}(\mp@subsup{p}{lij}{}-\mp@subsup{r}{lij}{})\mp@subsup{c}{lj}{}\mp@subsup{\prod}{k=1}{n}\mp@subsup{x}{k}{rlkj}=\mp@subsup{\sum}{l=0}{o}\mp@subsup{\sum}{j=1}{m}(\mp@subsup{p}{lij}{}-\mp@subsup{r}{lij}{})\mp@subsup{c}{lj}{}\mp@subsup{\prod}{k=1}{l}\mp@subsup{x}{hjk}{
    dx}dt=\mp@subsup{\sum}{j=1}{m}(\mp@subsup{P}{j}{}-\mp@subsup{R}{j}{})\mp@subsup{c}{j}{}\mp@subsup{\prod}{k=1}{n}\mp@subsup{x}{k}{rkj
            -x is the species vector
            m}\mathrm{ is the number of reactions
            p is a stoichiometric coefficient of the product
            r is a stoichiometric coefficient of the reactan
            -c is a reaction rate constan
            - }\textrm{n}\mathrm{ is the number of species
            - }h\mathrm{ is a species involved
            - P is the stoichiometric coefficient matrix for products
            R is the stoichiometric coefficient matrix for reactants
- simplifications
    simplified n order system of constant differential
    dx
            - }\textrm{x}\mathrm{ is a species vector
            a is a rate vector
            - solution
            x(t)=at+x(0)
            - calibration
            a=(x(t)-x(0))\frac{1}{t}
            - simplified zero order rate equation
            rij}=
            dxi}d= =\mp@subsup{\sum}{j=1}{m}\mp@subsup{p}{ij}{}\mp@subsup{c}{j}{
            dx
                    - uses rate equation notation
                    solution
                    x(t)=Pct + x(0)
                    calibration
                    c= P-1}(x(t)-x(0))\frac{1}{t
    *implified n order system of linear differential:
    \frac{\partial}{\partialt}x=Ax+b
            - x is a species vector 
            -b is a non-homogenous constant vector
            - solution
            x(t)=\mp@subsup{e}{}{At}(x(0)+\mp@subsup{A}{}{-1}b)-\mp@subsup{A}{}{-1}b
            - steady state
            x(\infty)=-A-1}
            - stability
            \lambda<0
            - optimization
            \frac{dx(\infty)}{db}=-\mp@subsup{A}{}{-1}\not=0
            dx(\infty)}d=\mp@subsup{A}{}{-2}b=0=
            - calibration
            A=-\operatorname{ln}((x(0)1}\mp@subsup{1}{}{T}-x(\infty)\mp@subsup{1}{}{T})(X(t)-x(\infty)\mp@subsup{1}{}{T}\mp@subsup{)}{}{-1})\frac{1}{t}=-\operatorname{ln}((X(0)-X(\infty))(X(t)-X(\infty)\mp@subsup{)}{}{-1})\frac{1}{t
            b=-Ax(\infty)=\operatorname{ln}((x(0)\mp@subsup{1}{}{T}-x(\infty)\mp@subsup{1}{}{T})(X(t)-x(\infty)\mp@subsup{1}{}{T}\mp@subsup{)}{}{-1})\frac{x(\infty)}{t}=\operatorname{ln}((X(0)-X(\infty))(X(t)-X(\infty)\mp@subsup{)}{}{-1})\frac{x(\infty)}{t}
                \cdot }X(t)\mathrm{ is the matrix of measured data
```

$$
\begin{aligned}
& \sum_{i=1}^{n} r_{i j}=\sum_{l=0}^{1} \sum_{i=1}^{n} r_{l i j} \leq 1 \\
& \frac{d x_{i}}{d t}=\sum_{j=1}^{m}\left(p_{i j}-r_{i j}\right) c_{j} x_{h j}^{r_{h j}}=\sum_{l=0}^{1} \sum_{j=1}^{m}\left(p_{l i j}-r_{l i j}\right) c_{l j} r_{h j}^{r_{h j}}=\sum_{j=1}^{m}\left(p_{l i j}-r_{l i j}\right) c_{l j} x_{h j}+\sum_{j=1}^{m}\left(p_{0 i j}-r_{i j j}\right) c_{0 j}=\sum_{l=0}^{1} \sum_{j=1}^{m}\left(p_{l i j}-r_{l i j}\right) c_{l j} \prod_{k=1}^{l} x_{h j k} \\
& \frac{d x}{d t}=\sum_{j=1}^{m}\left(P_{j}-R_{j}\right) c_{j} x_{h_{j}}^{r_{h j}} \\
& \text { - uses rate equation notation } \\
& \text { - simplified } \mathrm{n} \text { order system of quadratic differential: } \\
& \frac{d x_{i}}{d t}=x^{T} A_{i} x+b_{i} x+c_{i} \\
& \text { - } \mathrm{x} \text { is the species vector } \\
& \text { - A is a quadratic coefficient matrix } \\
& \text { - } b \text { is a linear coefficient vector } \\
& \text { - c is a non-homogenous constant } \\
& \sum_{i=1}^{n} r_{i j}=\sum_{l=0}^{2} \sum_{i=1}^{n} r_{l i j} \leq 2 \\
& \frac{d x_{i}}{d t}=\sum_{j=1}^{m}\left(p_{i j}-r_{i j}\right) c_{j} x_{h_{j 1}}^{r_{h j 1}} x_{h j 2}^{r_{h j j}}=\sum_{l=0}^{2} \sum_{j=1}^{m}\left(p_{l i j}-r_{l i j}\right) c_{l j} x_{h_{j 1}}^{r_{h j i j}} x_{h j 2}^{r_{h / 2 j}}=\sum_{j=1}^{m}\left(p_{2 i j}-r_{2 i j}\right) c_{2 j} x_{h j 1} x_{h j 2}+\sum_{j=1}^{m}\left(p_{1 i j}-r_{1 i j}\right) c_{1 j} x_{h j 1}+\sum_{j=1}^{m}\left(p_{0 i j}-r_{0 i j}\right) c_{0 j}=\sum_{l=0}^{2} \sum_{j=1}^{m}\left(p_{l i j}-r_{l i j}\right) c_{l j} \prod_{k=1}^{l} x_{h j k} \\
& \frac{d x}{d t}=\sum_{j=1}^{m}\left(P_{j}-R_{j}\right) c_{j} x_{h_{j 1}}^{r_{h j j}} x_{h_{j 2}}^{r_{h \rho j}} \\
& \text { - uses rate equation notation }
\end{aligned}
$$

