Cloning the norV promoter and nrfA gene into the iGEM Foundation Biobrick Standard to optimise E. coli for the conversion of nitric oxide (NO) to ammonia.

Laura Carman, Michael Coghlan, Sarah Dowie, Rathaven Gunaratnarajah, David Hanly and Kara Stubbs

Results

Colony PCR

Figure 6: Agarose gel of PCR product, from process outlined in experiment 3
lane 1: empty, lane 2: ladder, lane 3: norV 0.1 (1), lane 4: nor V 1 (1), lane 5 : NrfA 0.1 (1), lane 6: NrfA 1 (1), lane 7: norV 0.1 (2), lane 8: nor V 1 (2), lane 9: NrfA 0.1 (2), lane 10: NrfA 1 (2), lane 11 empty

Figure 6 shows successful PCR products of nor V in lanes 4 and 8. Whilst successful products for NrfA are shown in lanes 6, 9 and 10. PCR purification was carried out on successful products, in order to use within further experiments.

Ligations

Figure 7: Agarose gel showing diagnostic digests of ligations with plasmid (pSB1C3), norV and NrfA. Lane 1 and 2: empty, lane 3: linearised plasmid, lane 4: norV ligation (1:1), lane 5: norV ligation (1:3), lane 6: norV ligation (1:5), lane 7: NrfA ligation 1:1, lane 8: NrfA ligation 1:3 (1), lane 9: NrfA ligation 1:5 (2), lane 10: empty, lane 11: ladder.

Figure 7 shows two successful ligations of norV, they can be observed in lanes 4 and 5 on the gel. In both of these lanes, there are bands at approximately 2000bp, which corresponds to our plasmid (pSB1C3) and 200bp which corresponds to our insert (norV).

Figure 8: Agarose gel showing diagnostic digests of ligations with plasmid (pSB1C3), norV and NrfA
lane 1: ladder, lane 2 : NrfA ligation 1:1, lane 3: NrfA ligation 1:3 (1), lane 4: NrfA ligation 1:3 (2), lanes 5-11: empty

Figure 8 shows a successful ligation of NrfA and plasmid, it can be observed in lane 1 on the gel. In this lane, there are bands at approximately 2000bp, which corresponds to our plasmid (pSB1C3) and 1500bp which corresponds to our insert (NrfA)

