NucleoMod

NucleoMod can modify CDS based on synoymous mutation. It has 5 applications. Firstly, NucleoMod is used to design CRISPR sites on NeoChr so that we can silence the wild type genes. Secondly, it can erase specific enzyme sites as users command. Thirdly, users can create an enzyme site in selected region of specific genes. Fourthly, it can optimize the codon efficiency to increase the expression level. Finally, it can smash the tandem repeat bases to reduce the synthesis difficulty.

Plugin Scripts

This module contains 5 plugins: CRISPR design, erase enzyme site, create enzyme site, codon optimization, repeat smash. All plugins are included in the main program.

2.1 CRISPR design

This plugin is used to design CRISPR site of NeoChr genes so that we can silence the wild type genes. We use blast+ to ensure the uniqueness of CRISPR sites. If you are using more than one plugin at the same time, this plugin will start firstly and deliver the data to next plugin. Otherwise it will generate a new fasta file for sequence and gff file for annotation.

2.1.1 Internal operation

First, this plugin extracts sequence and annotation from the NeoChr FASTA file and GFF3 file, respectively. Regular expression will be applied to find the 23bp basic structure of CRISPR site, with a head of 'G' then following 20 facultative bases and finally followed by 'GG'. All the sequences and locus will be record in an array.

Second, the blast+ will be used to check whether the 12bp sequences (from 9th to 20th) are uniq in the wild type genome. Only uniq sites will be reserved.

Third, synonymous substitution method will be applied to change one base between the 9th to 20th bases of the CRISPR structure. The result will be record in GFF as an element of gene. If –verbose is set, the designed number will be report in STDOUT.

Finally, if this plugin is the last module, the sequence and annotation information will be recreated in FASTA and GFF format.

2.1.2 Example

We have two input forms to execute the plugin:

Run CRISPR design plugin only:

perl NucleoMod.pl -inputfa NeoChr.fa -inputgff NeoChr.gff -outputgff new_annotation.gff -outputfa new_chr.fa -crisprnum 2 -database saccharomyces_cerevisiae_chr.fa

2.1.3 Parameters

Parameter	Description	Default	Selectable range
inputfa	The NeoChr sequence file in		string
inputgff	The NeoChr annotation file in GFF3 format		string
outputgff	Output of new chromosome annotation in GFF3 format		string
outputfa	Output of new chromosome sequence in FASTA format		string
verbose	Output the detailed information in STDOUT	none	option
crisprnum	Number of CRISPR site to be design per gene		Int (>0)
database	The sequence of reference genome, used as blast+ database		string
help	Show help information		

2.1.4 The format of output file

The output files are standard GFF and FASTA format files.

1. GFF file

NeoChr	Genovo	left_te	lomere	1	689	+	<pre>. ID=universal_telomere_cap_left;</pre>
NeoChr	Genovo	gene	690	3565			ID=YAL054C;display=Acetyl-coA_synthetase_isoform;r
NeoChr	Genovo	3UTR	690	823			Parent=YAL054C;
NeoChr	Genovo	loxp	693	727			ID=site_specific_recombination_target_region;Paren
NeoChr	Genovo	mRNA	824	2965			Parent=YAL054C;
NeoChr	Genovo	CDS	824	2965			Parent=YAL054C;
NeoChr	Genovo	crispr	2156	2178			Parent=YAL054C;CRISPR_seq=GAAAGCAACAGATGGATTGTTGG;
NeoChr	Genovo	crispr	2303	2325			Parent=YAL054C;CRISPR seg=GGTAGAATGTTGAACACCCTTGG;

2. FASTA file

```
[STEP] Read fasta and gff finished.
[STEP] Initialization finished.
[CRISPR design] Design 2 CRISPR site(s) in YAL038W.
[CRISPR design] Design 2 CRISPR site(s) in YAL054C.
[CRISPR design] Design 2 CRISPR site(s) in YBR019C.
[CRISPR design] Design 2 CRISPR site(s) in YBR145W.
[CRISPR design] Design 2 CRISPR site(s) in YBR196C.
[CRISPR design] Design 2 CRISPR site(s) in YBR221C.
[CRISPR design] Design 2 CRISPR site(s) in YCL040W.
[CRISPR design] Design 2 CRISPR site(s) in YCR012W.
[CRISPR design] Design 2 CRISPR site(s) in YCR012W.
```

2.2 Erase enzyme site

Given a list of restriction enzyme information, this plugin will erase the restriction sites in every gene. If you are using more than one plugin at the same time, this plugin will start after CRISPR design and deliver the data to next plugin. Otherwise it will generate a new fasta file for sequence and gff file for annotation.

2.2.1 Internal operation

The enzyme information will be extracted. (If the –borbrick tandard parameter is set, it will also remove EcoRI, XbaI, SpeI, PstI and NotI) The recognize site will be reformatted to regular expression and searched in the CDS regions.

Once a restriction site is matched, synonymous substitution method will be applied to try to erase the enzyme site. When the substitution is finished, the plugin will restart the next search from 1 base after the last matched position.

If this plugin is the last module, the sequence and annotation information will be recreated in FASTA and GFF format.

2.2.2 Example

perl NucleoMod.pl -inputfa NeoChr.fa -inputgff NeoChr.gff -outputgff new_annotation.gff -outputfa new_chr.fa -biobrickstandard [-delenzymelist enzyme.list]

Format of enzyme.list:

Company enzyme_name enzyme_site ...

Eg. NEB BamHI G/GATCC

2.2.3 Parameters

Parameter	Description	Default	Selectable range
inputfa	The NeoChr sequence file in FASTA format		string
inputgff	The NeoChr annotation file in GFF3 format		string
outputgff	Output of new chromosome annotation in GFF3 format		string
outputfa	Output of new chromosome sequence in FASTA format		string
verbose	Output the detailed information in STDOUT	none	option
biobrickstandar	Erase the biobrick standard	none	option

d	enzyme site		
delenzymelist	The file of enzyme going to		string
	delete		
detail	Show the erased enzyme site in	none	option
	new gff		
help	Show help information		

2.2.4 The format of output

The output files are standard GFF and FASTA format.

GFF file

NeoChr	Genovo	enzyme	2952	2957			Parent=YAL054C;name=XbaI;enzyme_seq=TCTAGA;status=removed;
NeoChr	Genovo	codonop	timize	2960	2960		. Parent=YAL054C;origin_codon=AAG;optimize_codon=AAA;
NeoChr	Genovo	5UTR	2966	3565			Parent=YAL054C;
NeoChr	Genovo	gene	3566	5802			<pre>ID=YAL038W;display=Pyruvate_kinase;repeat_smash=7/16;best_codon_rate=0.93;</pre>
NeoChr	Genovo	5UTR	3566	4165			Parent=YAL038W;
NeoChr	Genovo	mRNA	4166	5668			Parent=YAL038W;
NeoChr	Genovo	CDS	4166	5668			Parent=YAL038W;
NeoChr	Genovo	enzyme	4169	4174		+	Parent=YAL038W;name=XbaI;enzyme_seq=TCTAGA;status=removed;

FASTA file

```
[STEP] Design CRISPR site finished.

[Erase Enzyme] Delete XbaI in YIL177C, position 28500

[Erase Enzyme] Delete PstI in YIL177C, position 28697

[Erase Enzyme] Delete EcoRI in YIL177C, position 29574

[Erase Enzyme] Delete SpeI in YIL177C, position 29829

[Erase Enzyme] Delete PstI in YIL177C, position 26802

[Erase Enzyme] Delete SpeI in YIL177C, position 27495

[Erase Enzyme] Delete SpeI in YIL177C, position 27531

[Erase Enzyme] Delete SpeI in YIL177C, position 27711

[Erase Enzyme] Delete SpeI in YIL177C, position 27747

[Erase Enzyme] Delete SpeI in YIL177C, position 27783

[Erase Enzyme] Delete SpeI in YIL177C, position 27819

[Erase Enzyme] Delete XbaI in YAL038W, position 4169

[Erase Enzyme] Can not remove all enzyme in YAL038W, recorded in new gff.
```

2.3 Create enzyme site

Given a list of restriction enzyme information, this plugin can create a new enzyme site in specific region of selected gene. If you are using more than one plugin at the same time, this plugin will start after erase enzyme site and deliver the data to next plugin. Otherwise it will generate a new fasta file for sequence and gff file for annotation.

2.3.1 Internal operation

First, information of enzyme site will be extracted. According to 3 reading frames, a searching tree will be constructed and converted to regular expression.

The plugin will search the selected regions and then change the sequence to enzyme site by synonymous substitution method.

If this plugin is the last module, the sequence and annotation information will be recreated in FASTA and GFF format.

2.3.2 Example

perl NucleoMod.pl -inputfa NeoChr.fa -inputgff NeoChr.gff -outputgff new_annotation.gff -outputfa new_chr.fa -addenzymelist enzyme.list -addenzymeconfig gene_id,start_pos,end_pos,enzyme_name

2.3.3 Parameters

Parameter	Description	Default	Selectable range
inputfa	The NeoChr sequence file		string
прина	in FASTA format		Stillig
inputgff	The NeoChr annotation file		string
inputgii	in GFF3 format		Stillig
	Output of new		
outputgff	chromosome annotation in		string
	GFF3 format		
	Output of new		
outputfa	chromosome sequence in		string
	FASTA format		
verbose	Output the detailed	none	ontion
verbose	information in STDOUT	none	option
addenzymelist	The file of enzyme to get		string
	enzyme site information		
addenzymeconfig	A array of string to specify		string,int,int,string
	enzyme and regions		
help	Show help information		

2.3.4 The format of ouput

The output files are standard GFF and FASTA format.

GFF file

NeoChr	Genovo	gene	5803	8636		ID=YBR019C;display=UDP-glucose-4-epimerase;repeat_smash=
NeoChr	Genovo	3UTR	5803	5936		Parent=YBR019C;
NeoChr	Genovo	loxp	5806	5840		ID=site_specific_recombination_target_region;Parent=YBR0
NeoChr	Genovo	mRNA	5937	8036		Parent=YBR019C;
NeoChr	Genovo	CDS	5937	8036		Parent=YBR019C;
NeoChr	Genovo	enzyme	6497	7942		Parent=YBR019C;name=EcoRI;enzyme_seq=CAATAG;status=addin
NeoChr	Genovo	crispr	7164	7186		Parent=YBR019C;CRISPR_seq=GTGGATATAATCCCTGATCGGGG;sub_se
NeoChr	Genovo	crispr	7688	7710		Parent=YBR019C;CRISPR_seq=GCGCCTATATAAGCACTATCAGG;sub_se
NeoChr	Genovo	5UTR	8037	8636		Parent=YBR019C;
NeoChr	Genovo	gene	8637	10426		ID=YBR145W;display=Alcohol_dehydrogenase_isoenzyme_V;rep
NeoChr	Genovo	5UTR	8637	9236		Parent=YBR145W:

FASTA file


```
[Erase Enzyme] Delete PstI in YAL054C, position 2755
[Erase Enzyme] Delete PstI in YIL177W-A, position 33182
[Erase Enzyme] Delete PstI in YIL177W-A, position 33206
[Erase Enzyme] Delete PstI in YIL177W-A, position 33338
[STEP] Remove enzyme site finished.
[Create Enzyme] Successfully add EcoRI enzyme in YBR019C, position 6497.
[STEP] Add enzyme site finished.
```

2.4 Codon optimization

Given a codon priority list, this plugin is used to optimize the codon so that we can increase the expression of selected genes. If you are using more than one plugin at the same time, this plugin will start after create enzyme site and deliver the data to next plugin. Otherwise it will generate a new fasta file for sequence and gff file for annotation.

2.4.1 Internal operation

The codon with same amino acid will be separated into 3 ranks, best normal and worst. Every codon of selected gene will be check whether the codon is in best rank. The codon in normal or worst will be change to best rank by synonymous substitution method. If this plugin is the last module, the sequence and annotation information will be recreated in FASTA and GFF format.

2.4.2 Example

perl NucleoMod.pl -inputfa NeoChr.fa -inputgff NeoChr.gff -outputgff new_annotation.gff -outputfa new_chr.fa -codonoptimize CodonPriority.txt -optimizeallgene [-optimizegenelist gene1,gene2,gene3]

2.4.3 Parameters

Parameter	Description	Default	Selectable range
inputfa	The NeoChr sequence file		string
Прина	in FASTA format		Stillig
inputgff	The NeoChr annotation		string
mpatgii	file in GFF3 format		Stillig
	Output of new		
outputgff	chromosome annotation		string
	in GFF3 format		
	Output of new		
outputfa	chromosome sequence in		string
	FASTA format		
verbose	Output the detailed	none	option
VOIDOGO	information in STDOUT	110110	орион
codonoptimize	Codon priority list to get		string
	the ranking information		
optimizeallgene	Optimize all genes in		option
	inputgff		
optimizegenelist	A list of gene going to		string,string,string,
	optimize, separate by		

	comma		
detail	Show the optimization	none	option
	sequence in new gff		
help	Show help information		

2.4.4 The format of ouput

The output files are standard GFF and FASTA format.

GFF file

NeoChr	Genovo	mRNA 824	2965		-		Parent	t=YAL054C;
NeoChr	Genovo	CDS 824	2965				Parent	t=YAL054C;
NeoChr	Genovo	codonoptimize	827	827				Parent=YAL054C;origin_codon=TGC;
NeoChr	Genovo	codonoptimize	836	836				Parent=YAL054C;origin_codon=GGA;
NeoChr	Genovo	codonoptimize	854	854				Parent=YAL054C;origin_codon=TTA;
NeoChr	Genovo	codonoptimize	860	860				Parent=YAL054C;origin_codon=TGC;
NeoChr	Genovo	codonoptimize	863	863				Parent=YAL054C;origin_codon=ACG;
NeoChr	Genovo	codonoptimize	866	866				Parent=YAL054C;origin_codon=TAC;
NeoChr	Genovo	codonoptimize	878	878				Parent=YAL054C;origin_codon=CAC;
NeoChr	Genovo	codonoptimize	881	881				Parent=YAL054C;origin_codon=TTA;
NeoChr	Genovo	codonoptimize	887	887				Parent=YAL054C;origin_codon=TCA;
NeoChr	Genovo	codonoptimize	890	890				Parent=YAL054C;origin_codon=TTA;
NeoChr	Genovo	codonoptimize	899	899				Parent=YAL054C;origin_codon=CCG;
NeoChr	Genovo	codonoptimize	911	911		-		Parent=YAL054C;origin_codon=TAC;

FASTA file

```
[Erase Enzyme] Delete PstI in YIL177W-A, position 33206
[Erase Enzyme] Delete PstI in YIL177W-A, position 33338
[STEP] Remove enzyme site finished.
[Create Enzyme] Successfully add EcoRI enzyme in YBR019C, position 6497.
[STEP] Add enzyme site finished.
[STEP] Codon optimization finished.
```

2.5 Repeat smash

This plugin go through the CDS region to find out the tandem repeat bases. Synonymous substitution method will be applied to break long tandem repeat base to reduce the synthesis difficulty. If you are using more than one plugin at the same time, this plugin will start finally and then it will generate a new fasta file for sequence and gff file for annotation.

2.5.1 Internal operation

Regular expression is used to find out the tandem repeat bases longer then specified length (usually longer than 5bp). From the third of the matched sequence, synonymous substitution method will be applied to break the tandem repeat bases.

If the substitution is successful and the rest sequence is still longer than the cutoff, then it will move to next 3 bases and do the same thing.

The sequence and annotation information will be recreated in FASTA and GFF format.

2.3.2 Example

perl NucleoMod.pl -inputfa NeoChr.fa -inputgff NeoChr.gff -outputgff new_annotation.gff -outputfa new_chr.fa -repeatsmash 5

2.3.3 Parameters

Parameter	Description	Default	Selectable range	
inputfo	The NeoChr sequence file in		string	
inputfa	FASTA format		String	
inputgff	The NeoChr annotation file in		string	
Inputgii	GFF3 format		String	
outputaff	Output of new chromosome		ctring	
outputgff	annotation in GFF3 format		string	
outputfo	Output of new chromosome		ctring	
outputfa	sequence in FASTA format		string	
verbose	Output the detailed information	none	option	
verbose	in STDOUT	none	орион	
repeatsmash	The tandem repeat bases		int	
	longer or equal to this cutoff will			
	be smashed			
detail	Show the repeat smash result	none	option	
	in new gff			
help	Show help information			

2.3.4 The format of ouput

The output files are standard GFF and FASTA format.

GFF file

NeoChr	Genovo	repeatsmash	1037	1044	-	Parent=YAL054C;origin_seq=AAAAAAAA;
NeoChr	Genovo	codonoptimize	1037	1037		Parent=YAL054C;origin_codon=AAG;opt:
NeoChr	Genovo	codonoptimize	1049	1049		Parent=YAL054C;origin_codon=ATA;opt:
NeoChr	Genovo	codonoptimize	1052	1052		Parent=YAL054C;origin_codon=GAG;opt:
NeoChr	Genovo	codonoptimize	1055	1055		Parent=YAL054C;origin_codon=TTA;opt:
NeoChr	Genovo	codonoptimize	1058	1058		Parent=YAL054C;origin_codon=ATC;opt:
NeoChr	Genovo	repeatsmash	1073	1081		Parent=YAL054C;origin_seq=TTTTTTTT
NeoChr	Genovo	codonoptimize	1082	1082		Parent=YAL054C; origin codon=CCT; opt:

FASTA file

>NeoChr

```
[Create Enzyme] Successfully add EcoRI enzyme in YBR019C, position 6497.
[STEP] Add enzyme site finished.
[STEP] Codon optimization finished.
[STEP] Repeat-smash finished.
[STEP] Ranking optimization finished.
```

3 Description of GFF file

Description	Element	explanation
repeat_smash	gene	Smashed number/total number
best_codon_rate	gene	The rate is equal by best rank codon
		number/all codon number
CRISPR_seq	crispr	The sequence of wild type, used to construct
		cas system
sub_seq	crispr	The 12bp uniq sequence
change_pos	crispr	The modified position in cirspr
change_base	crispr	The modified base
name	enzyme	Name of restriction enzyme
enzyme_seq	enzyme	Sequence of restriction enzyme
status	enzyme	Status of specific enzyme. removed means
		erase successfully; immutable means fail to
		erase; add means new created enzyme.
origin_codon	codonoptimize	The codon before optimization
optimize_codon	codonoptimize	The codon after optimization
origin_seq	repeatsmash	The tandem repeat sequence before
		optization
optimize_seq	repeatsmash	The tandem repeat sequence after optization