#### NeoChr

NeoChr is used to construct new chromosome denovo. It would assist users to grab related genes in different pathways of various organism manually, to rewire genes' relationship logically\*, and to replace genes with orthologs that score higher\*. Then it would allow users to define gene order and orientation in DRAG&DROP way, and decouple the genes with overlap. In the end, it would add or delete features, such as encrypted watermarks\*, telomere, loxp sites to build a brand new genome.

Note:

\*These function are unavailable now, and are explained in Next Version.

**Plugin Scripts** 

This module contains three plugins: Decouple.pl, Add.pl and Delete.pl.

# 2.1 Decouple.pl

This plugin is to decouple the genes which have overlap regions. These overlapping genes can be decoupled if meet the following conditions: (1)One gene's 5'UTR does not cover another gene's initial codon (ATG); (2)Overlapping region initial coordinate is in the coding DNA sequences(CDS) of gene which is need to be decoupled; (3)The decouple site of CDS have synonymous substitute codon to replace; After decoupling, we use these non-redundancy genes to generate a GFF file and a FASTA file.

#### 2.1.1 Internal operation

First, this plugin extracts base sequence from the genome file according to the gene order list, and records the gene order in the list. And then plugin records the annotation information according to the specie GFF file, moreover, plugin extends gene CDS upstream 600bp as 5'-UTR and downstream 100bp as 3'-UTR if the GFF file does not contain annotated these two features.

Second, this plugin detects the overlapping genes in the same chromosome. In case the overlapping genes are detected, it will judge whether the overlapping initial site is located in the CDS region, and identify the site is belong to phase 0/1/2.

Third, the plugin attempts to synonymous substitute codon to break the initial codon intra the CDS. Printing information whether or not be decoupled successfully, such as:

```
YDR512C and YDR513W can not be decoupled in the 646
YIL177C and YIL177W-A can not be decoupled in the 963
YIL172C and YIL171W-A are decoulped successfully in the 893
```

And non-redundancy genes are generated.

Finally, the plugin links non-redundancy genes to construct a new chromosome according to the gene order.

### 2.1.2 Example

We have two input forms to execute the plugin:

Using string format as gene order list input form:

perl GeneDecouple.pl --species saccharomyces\_cerevisiae\_chr --list\_format string --gene\_order="YAL054C -,YAL038W +,YBR019C -,YBR145W +,YCL040W +,YCR012W +,YCR105W +,YDL168W +,YPL017C -,YIL177C -,YIL177W-A +,YIL172C -,YIL171W-A +," --geneset\_dir ../gene\_set --upstream\_extend 600 --downstream\_extend 100 --neo\_chr\_gff neochr.gff --neo\_chr\_fa neochr.fa

Using file format as gene order list input form:

perl GeneDecouple.pl --species saccharomyces\_cerevisiae\_chr --list\_format file --gene\_order gene\_ordre.list --geneset\_dir ../gene\_set --upstream\_extend 600 --downstream\_extend 100 --neo\_chr\_gff neochr.gff --neo\_chr\_fa neochr.fa

#### 2.1.3 Parameters

| Parameter       | Description                      | Default | Selectable    |  |
|-----------------|----------------------------------|---------|---------------|--|
| T drameter      | Bescription                      | Bottunt | range         |  |
| species         | set the species name (general    |         |               |  |
| species         | use latin name)                  |         |               |  |
| list format     | set the input form of gene order | -4      | atrin a /fila |  |
| list_format     | list                             | string  | string/file   |  |
|                 | set the input gene order list    |         |               |  |
| gene_order      | file(include pathway genes and   |         |               |  |
|                 | addition genes)                  |         |               |  |
| ganagat din     | set the species annotation       | 600     |               |  |
| geneset_dir     | directory                        | 000     |               |  |
| unstraam aytand | set the length of gene           | 100     |               |  |
| upstream_extend | downstram(bp)                    | 100     |               |  |
| noo ohn off     | set the name of output neochr    |         |               |  |
| neo_chr_gff     | gff file                         |         |               |  |
| nao ahr fa      | set the name of output neochr    |         |               |  |
| neo_chr_fa      | fasta file                       |         |               |  |
| help            | Show help information            |         |               |  |

# 2.1.4 The format of output file

The output files are standard GFF and FASTA format files which are decoupled.

#### 1.decoupled GFF file

| NeoChr | Genovo | gene        | 31513 | 33982 | •     | - | ID=YIL172C;display=Alpha-glucosidase; |
|--------|--------|-------------|-------|-------|-------|---|---------------------------------------|
| NeoChr | Genovo | <b>3UTR</b> | 31513 | 31612 |       |   | Parent=YIL172C;                       |
| NeoChr | Genovo | mRNA        | 31613 | 33382 |       |   | Parent=YIL172C;                       |
| NeoChr | Genovo | CDS         | 31613 | 33382 |       |   | Parent=YIL172C;                       |
| NeoChr | Genovo | decoup      | le    | 33089 | 33089 |   | <pre>. Parent=YIL172C;</pre>          |
| NeoChr | Genovo | 5UTR        | 33383 | 33982 |       | - | Parent=YIL172C;                       |

#### 2.decoupled FASTA file

#### >NeoChr

#### 2.2 Add.pl

This plugin will add the LoxPsym sequence and the customized left and right telomeres, centromere and autonomously replicating sequence (ARS) into the FASTA file and GFF file which are generated by Decouple.pl.

## 2.2.1 Internal operation

The plugin adds LoxPsym behind the first 3bp of 3'-UTR in each gene and adds telomere, centromere and ARS according this mode:

left\_telomere + gene1 + centromere + gene2 + ARS + gene3 + right\_telomere

The distance between centromere and ARS is less than 30Kb.

Finally, user can see the new added features chromosome according to the JBrowse.

## 2.2.2 Example

perl 04.Add.pl --loxp loxPsym.feat --left\_telomere UTC\_left.feat --right\_telomere UTC\_right.feat --ars chromosome\_I\_ARS108.feature --centromere chromosome\_I\_centromere.feat --chr\_gff neochr.gff --chr\_seq neochr.fa --neochr\_seq neochr.final.fa --neochr\_gff neochr.final.gff

All the feature file format is 4 lines format, for example:

 $name = site\_specific\_recombination\_target\_region$ 

type = loxPsym

source = BIO

sequence = ATAACTTCGTATAATGTACATTATACGAAGTTAT

Note: the first line is the detail name of feature, the second line is the type of feature, the third line is the source of feature and the last line is the sequence of feature.

#### 2.2.3 Parameters

| Parameter      | Description                        | Default        | Selectable |
|----------------|------------------------------------|----------------|------------|
| 1 arameter     | Description                        | Delault        | range      |
| loxp           | set the sequence of loxp           | ATAACTTCGTATAA |            |
|                |                                    | TGTATGCTATACGA |            |
|                |                                    | AGTTAT         |            |
| left_telomere  | set the sequence of left telomere  |                |            |
| right_telomere | set the sequence of right telomere |                |            |
| chr_gff        | set the input neorchr_gff file     |                |            |
| chr_seq        | set the input neorchr_gff file     |                |            |
| neochr_seq     | set the name of output added loxps |                |            |
|                | and telomeres neochr_fa file       |                |            |
| neochr_gff     | set the name of output added loxps |                |            |
|                | and telomeres neochr_gff file      |                |            |

#### 2.2.4 The format of output

The output files are standard GFF and FASTA format of adding features chromosome. added features GFF file

| NeoChr | Genovo | left_t      | elomere | 1    | 689 | + | <pre>. ID=universal_telomere_cap_left;</pre>                 |
|--------|--------|-------------|---------|------|-----|---|--------------------------------------------------------------|
| NeoChr | Genovo | gene        | 690     | 3565 |     |   | <pre>ID=YAL054C;display=Acetyl-coA_synthetase_isoform;</pre> |
| NeoChr | Genovo | <b>3UTR</b> | 690     | 823  |     |   | Parent=YAL054C;                                              |
| NeoChr | Genovo | loxp        | 693     | 727  |     |   | ID=site_specific_recombination_target_region;Parent=YAL054C; |
| NeoChr | Genovo | mRNA        | 824     | 2965 |     |   | Parent=YAL054C;                                              |
| NeoChr | Genovo | CDS         | 824     | 2965 |     |   | Parent=YAL054C;                                              |
| NeoChr | Genovo | 5UTR        | 2966    | 3565 |     |   | Parent=YAL054C:                                              |

## 2.3 Delete.pl

This plugin can modify the GFF and FASTA file which are generated by Add.pl according to the user drags a window in the JBrowse and delete any gene in the window.

# 2.3.1 Internal operation

Firstly, user uses mouse to drag a window in the added features FASTA file which is showed in the JBrowse and JBrowse displays all the genes in this window.

(需要 JBrowse 截图)

Secondly, user decides which genes is need to be delected from the new chromosome and plugin deletes genes from GFF file and modify FASTA in the same time.

## 2.3.2 Example

perl 05.delete.pl --delete="YAL054C,YAL038W" --neochr\_gff neochr.refine.final.gff --neochr\_fa neochr.refine.final.fa --slim\_gff neochr.refine.delete.gff --slim\_fa neochr.refine.delete.fa

## 2.3.3 Parameters

| Parameter  | Description                                           | Default | Selectable range |
|------------|-------------------------------------------------------|---------|------------------|
| delete     | Set the to be deleted gene list                       |         |                  |
| neochr_gff | Set the input GFF file which is generated by Add.pl   |         |                  |
| neochr_fa  | Set the input FASTA file which is generated by Add.pl |         |                  |
| slim_gff   | Set the output GFF file                               |         |                  |
| slim_fa    | Set the output FASTA file                             |         |                  |

# 2.3.4 The format of ouput

The output files are standard GFF and FASTA format of deleted genes chromosome.