SegmMan

SegmMan will cut chromosome into pieces in different sizes. And it adds fragments with Gibson, Goldengate, telomere adaptors to them so that they are able to be assembled into whole experimentally. Besides, it adds flanking vector homologous region and enzyme sites for the preservation and excision from vectors.

Plugin Scripts

This module contains three plugins: 01.whole2mega.pl, 02.globalREmarkup.pl and 03.mega2chunk2mini.pl.

2.1 01.whole2mega.pl

This utility can split the whole chromosome (at least 90kbp long) into about 30k segments and add homologous overlap and adaptors, so that these fragments can be integrated into whole experimentally.

2.1.1 Internal operation

First, this utility searches for the location of centromere and ARSs (autonomously replicating site). The minimal distance between centromere and ARS should NOT be larger than a defined megachunk which is about 30k long.

Second, this utility cuts out the first 30k sequence window containing the centromere and its adjacent ARS, and then adds this megachunk with two original markers and left, right telomeres.

Thirdly, this utility continues to cut more megachunks from the original one to both ends. But these megachunks are not independent, they all have about 1kbp overlaps. Moreover, these new splited window can be given only one marker alternately and only left or right telomere. The output file will be dealed with 02.globalREmarkup.pl

For more information about segmentation design, please refer to the page ASSEMBLY DESIGN PRINCIPLE .

2.1.2 Example (command line)

perl 01.whole2mega.pl -gff sce_chrI.gff -fa sce_chr01.fa -ol 1000 -ck 30000 -m1 LEU2 -m2 URA3 -m3 HIS3 -m4 TRP1 -ot sce_chrI.mega

		default	Option
gff	The gff file of the chromosome being restriction enzyme sites parsing		
fa	The fasta file of the chromosome being restriction enzyme sites parsing (The length of the chromosome is larger than 90k)		

2.1.3 Parameters

ol	The length of overlap between megachunks	1000bp	
ck	The length of megachunks	30kbp	
m1	The first marker for selection alternately	LEU2 (1797bp)	LEU2/URA3/ HIS3/TRP1
m2	The second marker for selection alternately	URA3 (1112bp)	LEU2/URA3/ HIS3/TRP1
m3	The first marker orinally residing in first 30k segmentation	HIS3 (1774bp)	LEU2/URA3/ HIS3/TRP1
m4	The second marker orinally residing in first 30k segmentation	TRP1 (1467bp)	LEU2/URA3/ HIS3/TRP1
ot	The output file	Prefix(fa filename) + suffix(.mega)	

2.1.4 The format of output:

The output file is stored in /the path where you install GENOVO/Result/ 01.whole2mega.

Besides, there is screen output about the process state and result.

Screen output

01.state

Store the segmentation information

Megachunk_ID	Corresponding location in the designed
	chromosome
Part ID	Location in the segmentation

1	01.whole2mega/se	ce_chr01_	6.mega	1-29794
2	left_telomere	1	689	
3	URA3 690	1806		
4	Part of chromoso	ome	1807	31601
5				
6	01.whole2mega/se	ce_chr01_	5.mega	28795-58586
- 7	left_telomere	1	689	
8	LEU2 690	2491		
9	Part of chromoso	ome	2492	31283
10				
11	01.whole2mega/se	ce_chr01_	4.mega	57587-87378
12	left_telomere	1	689	
13	URA3 690	1806		
14	Part of chromoso	ome	1807	30598
15				
16	01.whole2mega/se	ce_chr01_	3.mega	86379-116170
17	left_telomere	1	689	
18	LEU2 690	2491		
	Part of chromoso		2492	21002

*.mega

Store the fasta information of the 30k segments

1	>01.whole2mega/sce_chr01_0.mega 172755-202755
2	CACACACACCACCACCACACACACACACACCACCACCAC
3	ACCACACCACACCACACCACACCACACCACACCACACACA
4	ACACACACACACCACACCACCACCACACACCACACACCACA
5	CACATAACTTCGTATAATGTACATTATACGAAGTTATCACATCAT
6	CACGATTATCCACATTTTAATATCTATATCTCATTCGGCGGCCCC
7	TAACCACTCAATTTATATACACTTATGTCAATATTACAAAAAAAT
8	AACACATAACTTCGTATAATGTACATTATACGAAGTTATACTACC
9	ATTCGGTCGAAAAAAGAAAAGGAGAGGGGCCAAGAGGGGGGGG
10	TATGTCTGTTATTAATTTCACAGGTAGTTCTGGTCCATTGGTGAA
11	GACTTGCTGGGTATTATATGTGTGCCCAATAGAAAGAGAACAATT
12	CAGGCACTCCGAAATACTTGGTTGGCGTGTTTCGTAATCAACCTA
13	TGGAGATGAGTCGTGGCAAGAATACCAAGAGTTCCTCGGTTTGCC
14	TCACAGAAACCTCATTCGTTTATTCCCTTGTTTGATTCAGAAGCA
15	AAGAGAGCCCCGAAAGCTTACATTTTATGTTAGCTGGTGGACTGA
16	AAGCGGAGGTGTGGAGACAAATGGTGTAAAAGACTCTAACAAAAT
17	AAGTATTGTTTGTGCACTTGCCTGCAGGCCTTTTGAAAAGCAAGC
18	ATCATTTGGCTTTTTGATTGATTGTACAGGAAAATATACATCGCA
19	TTCACAGGCGCATACGCTACAATGACCCGATTCTTGCTAGCCTTT

3.2 02.globalREmarkup.pl

This utility will parse the exited restriction enzyme sites residing in the chromosome.

3.2.1 Internal operation

This utility searches the exited restriction enzyme sites along the chromosome both plus strand and minus strand, after users define the list of enzymes.

Besides, we tried to find out all the potential restriction enzyme sites, so that maybe some unusual restriction enzyme sites can be created and let segmentation go. But because it had low efficiency, we're still working on that.

The output file will be dealed with 03.mega2chunk2mini.pl

For more information about segmentation design, please refer to the page ASSEMBLY DESIGN PRINCIPLE .

3.2.2 Example (command line)

perl 02.globalREmarkup.pl -sg 01.whole2mega/sce_chrI.mega -re standard_and_IIB -ct Standard.ct -ot sce_chrI.mega.parse

		default	Option
sg	The fasta file of the chromosome being 30k segmentated, the output of 01.whole2mega.pl		
re	The restriction enzyme sites list. It is devided by different standards, type (IIP, IIA, IIB), cost (standard, nonexpensive) and etc.	Standard_and_IIB	IIP/IIA/IIB/Standard/ Nonexpensive/ Standard_IIB Nonexpensive_IIB
ct	The codon table file of operated organism.	Standard.ct	See the list below.
out	The output file	Prefix(fa filename) + suffix(.parse)	

3.2.3 Parameters

Codon table list				
1 The Standard Code				
2 The Vertebrate Mitochondrial Code				
3 The Yeast Mitochondrial Code				
4 The Mold, Protozoan, and Coelenterate Mitochondrial Code and the				
Mycoplasma/Spiroplasma Code				
5The Invertebrate Mitochondrial Code				
6 The Ciliate, Dasycladacean and Hexamita Nuclear Code				
7 The Echinoderm and Flatworm Mitochondrial Code				

8 The Euplotid Nuclear Code
9 The Bacterial, Archaeal and Plant Plastid Code
10 The Alternative Yeast Nuclear Code
11 The Ascidian Mitochondrial Code
12 The Alternative Flatworm Mitochondrial Code
13 Blepharisma Nuclear Code
14 Chlorophycean Mitochondrial Code
15 Trematode Mitochondrial Code
16 Scenedesmus Obliquus Mitochondrial Code
17 Thraustochytrium Mitochondrial Code
18 Pterobranchia Mitochondrial Code
19 Candidate Division SR1 and Gracilibacteria Code

3.2.4 The format of utput

The output file is stored in /the path where you install GENOVO/Result/. 02.globalREmarkup.

Besides, there is screen output about the process state and result.

Screen output

*.parse

Store the exited enzyme recognition site in the megachunks

		U		
Enzyme ID	Start	End	Recognition site	Real site

1 BsrGI	318	323	TGTACA	TGTACA	
2 TatI	318	323	WGTACW	TGTACA	
3 CviQI	319	322	GTAC	GTAC	
4 Rsal	319	322	GTAC	GTAC	
5 Rsal	319	322	GTAC	GTAC	
6 Msll	340	349	CAYNNNN	RTG	CATCATTATG
7 Msll	340	349	CAYNNNN	RTG	CATCATTATG
8 HpyCH4V	348	351	TGCA	TGCA	
9 HpyCH4V	348	351	TGCA	TGCA	
10 BceAI	351	355	ACGGC	ACGGC	
11 BbvCI	361	367	CCTCAGC	CCTCAGC	
12 Bpu10I	361	367	CCTNAGC	CCTCAGC	
13 Mnll	361	364	CCTC	CCTC	
14 BseMII	362	366	CTCAG	CTCAG	
15 BspCNI	362	366	CTCAG	CTCAG	
16 Ddel	362	366	CTNAG	CTCAG	
17 MspAll	364	369	CMGCKG	CAGCGG	
18 MspAll	364	369	CMGCKG	CAGCGG	
19 Acil	366	369	CCGC	GCGG	

3.3. 03.chunk_30k_10k_2k.pl

This utility can produce 2k minichunks with Gibson adaptors and 10k chunks with goldengate adaptors.

3.3.1 Internal operation

This utility will segment the mega chunk produced by 03.mega2chunk2mini.pl into 2k minichunks with Gibson assembly adaptors, so that they can be put together into 10k chunks. First, this bin will search the inexistent restriction enzyme sites locally, and then decide the size of the minichunks according to the requirements from users, and add two same Gibson adaptors to each sides of minichunks.

Secondly, the second part of this bin will define the start and end point of the chunks as users asked and design goldengate assembly adaptors for the chunks.

The output file can be sent in gene synthesis company after human attention and double check.

For more information about segmentation design, please refer to the page ASSEMBLY DESIGN PRINCIPLE .

3.3.2 Example (command line)

perl 03.mega2chunk2mini.pl -re standard_and_IIB -sg 01.whole2mega/sce_chr01_0.mega -ps 02.globalREmarkup/sce_chr01_0.parse -ot 03.mega2chunk2mini

		default	Option
sg	The fasta file of the 30k segmentation, the output of 01.wh2mega.pl		
ps	The markup file of the 30k segmentation, the output of 02.globalREmarkup.pl		
re	The restriction enzyme sites list. It is devided by different standards, type (IIP, IIA, IIB), cost (standard, nonexpensive) and etc.	Standard_and_IIB	IIP/IIA/IIB/Standard/ Nonexpensive/ Standard_IIB Nonexpensive_IIB
a2	2k to 10k assembly strategy (Gibson or Goldengate)	Gibson	Gibson/ Goldengate
a10	10k to 30k assembly strategy	Goldengate	Gibson/ Goldengate

3.3.3 Parameters

	(Gibson or Goldengate)		
ckmax2	The maximum length of minichunks	2200 bp	
ckmin2	The minimum length of minichunks	1800 bp	
cknum	The number of minichunks in a chunk	5	

If parameter a2 is Gibson, then there are additional parameters:

ol2	The length of overlap	40 bp	
tmax2	The maximum melting temperature of the overlap of minichunks	60℃	
tmin2	The minimum melting temperature of the overlap of minichunks	56℃	
fe2	The minimum free energy of the overlap of minichunks	-3	
ex2	The type of exonuclease used for minichunks	Т5	T5/T3
102	The minimum distance between minichunks overlap and loxpsym	40 bp	
en2	The type of enzyme flanking minichunks	IIP	
et2	The temperature of enzyme used in minichunks digestion	37°C	
ep2	The maximum unit price of enzyme used in minichunks digestion	0.5 \$/unit	

If parameter a10 is Goldengate, then there are additional parameters:

en10	The type of enzyme flanking chunks	IIB	IIA/IIB
et10	The temperature of	37℃	

enzyme used in chunks	
digestion	

3.3.4 The format of ouput

The output file is stored in /the path where you install GENOVO/Result/. 03.mega2chunk2mini.

Besides, there is screen output about the process state and result.

Screen output

*.2kstate

Store the minichunks states.

Γ	Left l	IP Right	IIP	Start	End		Size	of	Melting
	enzyme sit	U					minichur		temperature
	,								of overlap
									or overlap
1	*	BamHI	1	2000	2000	67.			
2	BamHI	BamHI	1961	3953	1993	69.	04		
3	BamHI	BamHI	3914	6069	2156	67.	04		
- 4	BamHI	BamHI	6030	8000	1971	67			
5	BamHI	*	7961	9970	2010	68.	56		
6	*	BamHI	9931	11956	2026	66.	32		
- 7	BamHI	BamHI	11917	14006	2090	66.	95		
8	BamHI	BamHI	13967	16063	2097	68.	98		
9	BamHI	BamHI	16024	18008	1985	67.	8		
10	BamHI	*	17969	19881	1913	69.	05		
11	*	EcoRI	19842	22067	2226	68.	52		
12	BamHI	BamHI	22028	24057	2030	66.	89		
13	HindIII	HindIII	24018	26049	2032	67.	48		
14	HindIII	HindIII	26010		2071	68.			
15	BamHI	*	28041		2067	67.			
16		BamHI	30068		2011	68.			
	EcoRI	EcoRI	32039		1840	71.			
18		*	33839		792				

*.10kstate

Store the chunks states.

Left	IIB	Right	IIB	Start		End	Size of chunks
enzyme site	e	enzyme site					
1 *	Ajul	1	9	970	9970		
2 Ajul	Ajul	9931	1	9881	9951		
3 Bael	Bael	19842	3	0107	10266		
4 Bael	*	30068	- 3	4630	4563		

*.mini

Store the fasta of designed minichunks.

1	>*	BamHI	1	2000	2000	67.21
2	CACACACA	ACCACACCO	CACACCAC	ACACACAC	CACACCCAC	CACCACA
3						
4	>BamHI	BamHI	1961	3953	1993	69.04
5	GGATCCT	FTGCATAAA	ACACCATC	AGCCTCAA	GTCGTCAAC	GTAAAGA
6						
- 7		BamHI				
8	GGATCCAT	TTTCAACTA	ACAGTGGCI	ACCTAGAGA	ACCAAATGI	ICGCTGA
9						
10		BamHI				67
11	GGATCCAT	FACCTGTAG	CAGGTTTC	ATTCGTAA	AGCAGGGA	CTCTAGT
12						
13		Ajul			2010	
14	GGATCCAT	FTCGATCC1	ICATGCAG	CCTCGTT	AATATGCTA	AAAATGG
15						
16		BamHI				66.32
17	7GATTAG.	FAGTATAG	CAAAAGTAI	ACACTIGI	CACCGCAU	GACTECA
18	ъ. н.	F H	11010	1 1000	0000	66.05
19	>BamHI		11917		2090 	66.95
20	GGATCCA	GTAAAAAA	AAATAACGI	ACAACIGCI	AGGACTCGA	AACCTGC