

GENETIC CIRCUITS

Andres Felipe Simbaqueba iGEM Colombia Team 2013 Universidad de Los Andes

CONTENT

- Logic gates
- Feedback
 - Positive
 - Negative
- Hysteresis
- Operon
 - Lac Operon
- Hysteresis and lac Operon
- Logic gates and genes

LOGIC GATES

- "A logic gate is an idealized or physical device implementing a <u>Boolean function</u>."
- "It performs a <u>logical operation</u> on one or more logical inputs, and produces a single logical output.".
- "A Boolean function (or switching function) is a <u>function</u> of the form $f : \mathbf{B}^k \to \mathbf{B}$, where $\mathbf{B} = \{0, 1\}$ is a <u>Boolean domain</u> and k is a non-negative integer."

LOGIC GATES (2)

Туре	Distinctive shape	Rectangular shape	Boolean algebra	Truth table
AND	= D-	<u>&</u> _	$A\cdot B$	INPUT OUTPUT A B A AND B O O O O 1 O 1 O 1 1 1 1
OR	⇒ >−		A + B	INPUT OUTPUT A B A OR B O O O O 1 1 1 0 1 1 1 1
NOT	- >-	1	\overline{A}	A NOT A 0 1 1 0

LOGIC GATES (3)

	= >-		$\overline{A\cdot B}$	INPUT OUTPUT
NAND				A B A NAND B
				0 0 1
				0 1 1
				1 0 1
				1 1 0
NOR	$\Rightarrow \triangleright$	≥1	$\overline{A+B}$	INPUT OUTPUT
				A B A NOR B
				0 0 1
				0 1 0
				1 0 0
				1 1 0
		=1	$A\oplus B$	INPUT OUTPUT
				A B A XOR B
XOR				0 0 0
XOR				0 1 1
				1 0 1
				1 1 0
XNOR		=1	$\overline{A \oplus B}$ or $A \odot B$	INPUT OUTPUT
				A B A XNOR B
				0 0 1
				0 1 0
				1 0 0
				1 1 1

FEEDBACK

- Feedback is a process in which information about the past or the present influences the same phenomenon in the present or future.
- Divided into two types:
 - Positive
 - Negative

POSITIVE FEEDBACK

 The result of positive feedback is to <u>augment</u> changes, so that small perturbations may result in big changes.

POSITIVE FEEDBACK (2)

• "Positive feedback loops are sources of growth, explosion, erosion, and collapse in systems. A system with an unchecked positive loop ultimately will destroy itself. That's why there are so few of them. Usually a negative loop will kick in sooner or later."

Donella Meadows

NEGATIVE FEEDBACK

• Negative feedback tends to make a system <u>self-regulating</u>; it can produce <u>stability</u> and reduce the effect of fluctuations.

HYSTERESIS

- Hysteresis is the dependence of a system not only on its current environment but also on its past environment.
- This dependence arises because the system can be in more than one internal state.

OPERON

- "An operon is a functioning unit of DNA containing a cluster of genes under the control of a single regulatory signal or promoter."
- "The genes are <u>transcribed</u> together into an <u>mRNA</u> strand and either <u>translated</u> together."
- An operon is made up of 3 basic components.

OPERON (2)

- Promoter: a <u>nucleotide</u> sequence that enables a gene to be <u>transcribed</u>.
- Operator: a segment of DNA that a regulator binds to. It is classically defined in the <u>lac</u> operon as a segment between the promoter and the genes of the operon.
- Structural genes the genes that are coregulated by the operon.

LAC OPERON

The lac operon is an operon required for the transport and metabolism of lactose in Escherichia coli and some other enteric bacteria.

 The genes encode β-galactosidase, lactose permease, and thiogalactoside transacetylase.

HYSTERESIS AND LAC OPERON

LOGIC GATES AND GENES

The genetic NOR gate.

 A NOR gate is 'on'only when both inputs are 'off'.

Inp	uts	_
in1	in2	Output
0	0	1
0	1	0
1	0	0
1	1	0

LOGIC GATES AND GENES (2)

LOGIC GATES AND GENES (4)

REFERENCES

- Multistability & introduction λ phage model. Taken from <u>http://web.mit.edu/biophysics/sbio/PDFs/L7_slides.pdf.</u> May 11, 2013.
- Negative feedback. Taken from <u>http://en.wikipedia.org/wiki/Negative_feedback</u>. May 11, 2013.
- Positive feedback. Taken from <u>http://en.wikipedia.org/wiki/Positive_feedback</u>. May 11, 2013.
- Logic gate. Taken from <u>http://en.wikipedia.org/wiki/Logic_gates. May 11</u>, 2013.
- Boolean function. Taken from <u>http://en.wikipedia.org/wiki/Boolean_function. May 11,2013.</u>
- Bistability of the lac Operon During Growth of Escherichia coli on Lactose and Lactose + Glucose. Atul Naranga, Sergei S. Pilyuginb. University of Florida. 2007.
- Robust multicellular computing using genetically encoded NOR gates and chemical 'wires'. Alvin Tamsir, Jeffrey J. Tabor & Christopher A. Voigt. University of California. 2011.