Team:Glendale Community College

From 2013.igem.org

(Difference between revisions)
Line 261: Line 261:
   <p><big style="color: rgb(32,178,170);"><big><big><big> iGEM 2013</big></big></big></big></p>   
   <p><big style="color: rgb(32,178,170);"><big><big><big> iGEM 2013</big></big></big></big></p>   
   <p>
   <p>
-
We began our project with a plan to characterize existing biobricks, as well as create a few of our own to complete a comprehensive desiccation toolkit that can be used for a variety of applications. Osaka’s 2011 iGEM team created coding device biobricks for genes PprI (BBa_K602000), PprM (BBa_K602002), PprA (BBa_K602001), and RecA (BBa_K602003) as well as expression parts for PprI (BBa_K602005), PprM (BBa_K602007), and PprA (BBa_K602006). We wanted to characterize these parts in a novel way, as Osaka did not expose their transformed bacteria to salt stress. We also planned to expose the transformed bacteria to our Hydrogen Peroxide Growth Curve Assay for further characterization. University College London’s 2012 iGEM team created a coding part for IrrE (BBa_K729001), as well as an expression device containing their coding sequence for IrrE (BBa_K729005). We planned to further characterize their IrrE biobricks by exposing the transformed E.coli to our Salt Stress Growth Curve Assay as well as our Hydrogen Peroxide Growth Curve Assay. Valencia’s 2010 team created an expression part for one of the Late Embryogenesis Abundant (LEA) proteins, which also is said to confer salt and oxidative resistance when transformed in E.coli. Our goal was to further characterize their LEA biobrick. Through rigorous research using bioinformatics, we found that homologs to these genes exist in a local bacterium, Deinococcus hopiensis. Our plan was to create coding devices and expression devices for PprI, PprM, PprA, RecA, IrrE, and LEA from the local D. hopiensis bacterium as well as a LEA biobrick from Deinococcus radiodurans. We wished to transform these genes from D. hopiensis and D. radiodurans to E.coli, as E.coli is a well-known, easily accessible, and commonly used chassis. We, would then expose the transformed bacteria to salt stress and hydrogen peroxide stress, and carefully characterize the effects.
+
We began our project with a plan to characterize existing biobricks, as well as create a few of our own to complete a comprehensive desiccation toolkit that can be used for a variety of applications. Osaka’s 2011 iGEM team created coding device biobricks for genes PprI (BBa_K602000), PprM (BBa_K602002), PprA (BBa_K602001), and RecA (BBa_K602003) as well as expression parts for PprI (BBa_K602005), PprM (BBa_K602007), and PprA (BBa_K602006). We wanted to characterize these parts in a novel way, as Osaka did not expose their transformed bacteria to salt stress. We also planned to expose the transformed bacteria to our Hydrogen Peroxide Growth Curve Assay for further characterization. University College London’s 2012 iGEM team created a coding part for IrrE (BBa_K729001), as well as an expression device containing their coding sequence for IrrE (BBa_K729005). We planned to further characterize their IrrE biobricks by exposing the transformed E.coli to our Salt Stress Growth Curve Assay as well as our Hydrogen Peroxide Growth Curve Assay. Valencia’s 2010 team created an expression part for one of the Late Embryogenesis Abundant (LEA) proteins, which also is said to confer salt and oxidative resistance when transformed in E.coli. <img style="width: 150px; height: 150px;" alt="GCC" src="https://static.igem.org/mediawiki/2013/3/3f/Gel.png" align="right">Our goal was to further characterize their LEA biobrick. Through rigorous research using bioinformatics, we found that homologs to these genes exist in a local bacterium, Deinococcus hopiensis. Our plan was to create coding devices and expression devices for PprI, PprM, PprA, RecA, IrrE, and LEA from the local D. hopiensis bacterium as well as a LEA biobrick from Deinococcus radiodurans. We wished to transform these genes from D. hopiensis and D. radiodurans to E.coli, as E.coli is a well-known, easily accessible, and commonly used chassis. We, would then expose the transformed bacteria to salt stress and hydrogen peroxide stress, and carefully characterize the effects.
</p>
</p>
<hr>
<hr>

Revision as of 02:49, 23 September 2013

Glendale Community College ArizonaGCC

iGEM

iGEM 2013

We began our project with a plan to characterize existing biobricks, as well as create a few of our own to complete a comprehensive desiccation toolkit that can be used for a variety of applications. Osaka’s 2011 iGEM team created coding device biobricks for genes PprI (BBa_K602000), PprM (BBa_K602002), PprA (BBa_K602001), and RecA (BBa_K602003) as well as expression parts for PprI (BBa_K602005), PprM (BBa_K602007), and PprA (BBa_K602006). We wanted to characterize these parts in a novel way, as Osaka did not expose their transformed bacteria to salt stress. We also planned to expose the transformed bacteria to our Hydrogen Peroxide Growth Curve Assay for further characterization. University College London’s 2012 iGEM team created a coding part for IrrE (BBa_K729001), as well as an expression device containing their coding sequence for IrrE (BBa_K729005). We planned to further characterize their IrrE biobricks by exposing the transformed E.coli to our Salt Stress Growth Curve Assay as well as our Hydrogen Peroxide Growth Curve Assay. Valencia’s 2010 team created an expression part for one of the Late Embryogenesis Abundant (LEA) proteins, which also is said to confer salt and oxidative resistance when transformed in E.coli. GCCOur goal was to further characterize their LEA biobrick. Through rigorous research using bioinformatics, we found that homologs to these genes exist in a local bacterium, Deinococcus hopiensis. Our plan was to create coding devices and expression devices for PprI, PprM, PprA, RecA, IrrE, and LEA from the local D. hopiensis bacterium as well as a LEA biobrick from Deinococcus radiodurans. We wished to transform these genes from D. hopiensis and D. radiodurans to E.coli, as E.coli is a well-known, easily accessible, and commonly used chassis. We, would then expose the transformed bacteria to salt stress and hydrogen peroxide stress, and carefully characterize the effects.


Welcome to Our Wiki!

Some pictures from our experiments.