Team:Grenoble-EMSE-LSU/Project/Device
From 2013.igem.org
Line 26: | Line 26: | ||
<p align="center"><img src="https://static.igem.org/mediawiki/2013/a/a7/Eglometer.png" alt="The Eglometer" width="500px" /></p> | <p align="center"><img src="https://static.igem.org/mediawiki/2013/a/a7/Eglometer.png" alt="The Eglometer" width="500px" /></p> | ||
- | <p id="legend"><strong><em>The E. glometer of Cambrige team (iGEM 2010)</em></strong><br> | + | <p id="legend"><strong><em>The E. glometer of Cambrige team (iGEM 2010)</em></strong></br> |
- | Device built by Cambrige team in 2010 to measure the light intensity of their LuxBrick<br> | + | Device built by Cambrige team in 2010 to measure the light intensity of their LuxBrick</br> |
<em><strong>Source:</strong></em><a href="https://2010.igem.org/Team:Cambridge/Tools/Eglometer">https://2010.igem.org/Team:Cambridge/Tools/Eglometer</a> | <em><strong>Source:</strong></em><a href="https://2010.igem.org/Team:Cambridge/Tools/Eglometer">https://2010.igem.org/Team:Cambridge/Tools/Eglometer</a> | ||
</p> | </p> | ||
- | |||
<p> | <p> | ||
We use a similar photodiode (TSL230RD) – the same as the TSL230RP-LF but as a surface mounted device (SMD) – and an Arduino Uno. Arduino is a single-board microcontroller created to make electronics more accessible. The main asset of the photodiode is that the output can be either a pulse train or a square wave (50% duty cycle) with its frequency directly proportional to light intensity. Since we are using a microcontroller, it is easy to calculate the frequency with the digital input of the microchip thanks to high or low level detection and we will have a better resolution because low frequencies are easier to measure than low voltages at low light levels. For the optical part we use a LED lamp and a cube filter from a fluorescence microscope with excitation and emission filters and an adjustable lens. The LED lamp was chosen so that e didn't have to buy high-power LEDS and build a card with heat sinks. This lamp illuminates with 520 lumens in a 40° cone under 12V and 6W. The low voltage was chosen as a safety measure and the small angle to avoid losing too much light. The excitation filter is a green interferential filter to excite the red fluorescent protein and the red emission filter is only a colored filter to collect all the red light in order to have a more precise measure. In the cube there is also a dichroic mirror that reflects all the green light and transmits all the red light. This mirror enables us to separate the photodiode from the light source completely. | We use a similar photodiode (TSL230RD) – the same as the TSL230RP-LF but as a surface mounted device (SMD) – and an Arduino Uno. Arduino is a single-board microcontroller created to make electronics more accessible. The main asset of the photodiode is that the output can be either a pulse train or a square wave (50% duty cycle) with its frequency directly proportional to light intensity. Since we are using a microcontroller, it is easy to calculate the frequency with the digital input of the microchip thanks to high or low level detection and we will have a better resolution because low frequencies are easier to measure than low voltages at low light levels. For the optical part we use a LED lamp and a cube filter from a fluorescence microscope with excitation and emission filters and an adjustable lens. The LED lamp was chosen so that e didn't have to buy high-power LEDS and build a card with heat sinks. This lamp illuminates with 520 lumens in a 40° cone under 12V and 6W. The low voltage was chosen as a safety measure and the small angle to avoid losing too much light. The excitation filter is a green interferential filter to excite the red fluorescent protein and the red emission filter is only a colored filter to collect all the red light in order to have a more precise measure. In the cube there is also a dichroic mirror that reflects all the green light and transmits all the red light. This mirror enables us to separate the photodiode from the light source completely. | ||
Line 57: | Line 56: | ||
To know if this program works, a function generator was plug in one of the digital input of Arduino instead of the photodiode. By changing the frequency of the square signal sent by the generator and measuring several times the frequency with Arduino and compare the measures to the frequency given by an oscilloscope, we can calculate the accuracy of the program.</br> | To know if this program works, a function generator was plug in one of the digital input of Arduino instead of the photodiode. By changing the frequency of the square signal sent by the generator and measuring several times the frequency with Arduino and compare the measures to the frequency given by an oscilloscope, we can calculate the accuracy of the program.</br> | ||
- | If the algorithm is right, the curve should follow the equation x=y, which means that Arduino and the oscilloscope measure the same frequencies.</br></p> | + | If the algorithm is right, the curve should follow the equation x=y, which means that Arduino and the oscilloscope measure the same frequencies.</br></br></p> |
<p align="center", style="margin:30px"><img src="https://static.igem.org/mediawiki/2013/3/31/Arduino_mode1.png" alt="Arduino Mode1" width="550px"> | <p align="center", style="margin:30px"><img src="https://static.igem.org/mediawiki/2013/3/31/Arduino_mode1.png" alt="Arduino Mode1" width="550px"> |
Revision as of 18:38, 23 September 2013