Team:Penn State/CesaProject

From 2013.igem.org

(Difference between revisions)
(Created page with "<html> <style> - Uncontrollable Stuff: #contentSub, #search-controls, .firstHeading, #footer-box, #catlinks, #p-logo { display:none;} #top-section { border: none; ...")
 
(12 intermediate revisions not shown)
Line 18: Line 18:
body {
body {
-
     height: 2148px;
+
     height: 5000px;
     width: 100%;
     width: 100%;
-
     background-image: url(http://i.imgur.com/sfAzeRn.jpg?1);  
+
     background-image: url(http://i.imgur.com/iAVmVz5.jpg);  
     background-repeat: no-repeat;
     background-repeat: no-repeat;
 +
    background-color: white;
     margin: none;
     margin: none;
     padding: 0;}
     padding: 0;}
Line 69: Line 70:
color: #FFCC33;
color: #FFCC33;
text-decoration: none;
text-decoration: none;
 +
border: none;
}
}
Line 74: Line 76:
.A {  
.A {  
text-align: center;
text-align: center;
-
color: white;
+
color: black;
font-size: 18px;
font-size: 18px;
height: 75px;
height: 75px;
-
width: 125px;
+
width: 135px;
border-radius: 100%;
border-radius: 100%;
background-color: transparent;
background-color: transparent;
 +
margin-left: -20px;
}
}
 +
 +
.B {
 +
margin: 0;
 +
}
 +
 +
#Home{
 +
margin-top: -35px;
 +
margin-left: -20px;
 +
}
 +
 +
#notebook{
 +
margin-top: 5px;
 +
}
 +
#promoter{
#promoter{
position: relative;
position: relative;
 +
margin-top: -10px;
}  
}  
#Cas9{
#Cas9{
position: relative;
position: relative;
-
top: 10px;
 
}  
}  
#Cesa{
#Cesa{
position: relative;
position: relative;
-
top: 33px;
+
margin-top: 15px;
}  
}  
#Butanol{
#Butanol{
position: relative;
position: relative;
-
width: 110px;
+
margin-top: 25px;
-
top: 50px;
+
}  
}  
#Vanillin{
#Vanillin{
position: relative;
position: relative;
-
width: 110px;
+
margin-top: 25px;
-
top: 65px;
+
}  
}  
#parts {
#parts {
position: relative;
position: relative;
-
top: 100px;
+
margin-top: 25px;
}
}
#attribution {
#attribution {
position: relative;
position: relative;
-
top: 120px;
+
margin-top: 55px;
-
color: black;
+
-
background-color: green;
+
}
}
#human {
#human {
position: relative;
position: relative;
-
top: 95px;
+
margin-top: -10px;
}
}
Line 129: Line 142:
background-color: transparent;
background-color: transparent;
top: -290px;
top: -290px;
-
left: 450px;
+
left: 430px;
}
}
Line 138: Line 151:
margin-top: 10px;
margin-top: 10px;
}
}
 +
 +
#TableContents{
#TableContents{
Line 145: Line 160:
}
}
 +
#climb{
 +
position: fixed;
 +
float: right;
 +
left: 1150px;
 +
bottom: -5px;
 +
}
</style>
</style>
Line 150: Line 171:
   <div ID="workspace">
   <div ID="workspace">
-
<h1 style="color: green"> Plant Promoter Project</h1>
+
<h1 ID="top" style="color: green"> Cellulose Synthase (Cesa) Project</h1>
             <p ID="welcome">
             <p ID="welcome">
-
As plants are still novel organisms for most of synthetic biology, we we are interested in developing methods of control for our projects. Currently the Cauliflower Mosaic Virus 35S promoter is the most widely used plant promoter. In hopes of increasing the availability of plant promoters, our project aims at testing viral promoters due to their relative efficiency, as well as cytoskeletal protein promoters due to their natural abundance.  Testing these promoters in parallel with the CaMV 35S will create a plant promoter catalog which can be used for future iGEMers exploration of plant synthetic biology.  
+
Cellulose is the most abundant polysaccharide on Earth and is incredibly valuable for multiple uses including paper, cellophane, and biofuel. Although cellulose in everywhere, we are still limited by the amount of production by the plants and constantly use more. The goal of our experiment is to introduce a secondary cell wall cellulose synthase complex into the primary cell wall to ultimately increase the production of cellulose in plants. Our hope is that if we use a primary cell wall promoter followed by secondary CesA’s (Cellulose Synthases) in Arabidopsis thaliana, we can produce more cellulose and create stronger plants.  
</p>
</p>
<div ID="TableContents">
<div ID="TableContents">
Line 176: Line 197:
             <h2 style="color: green" ID="Intro"> Introduction</h2>
             <h2 style="color: green" ID="Intro"> Introduction</h2>
             <p>
             <p>
-
...
+
Cellulose is the most abundant polysaccharide on Earth and is incredibly valuable for multiple uses including paper, cellophane, and biofuel. Although cellulose in everywhere, we are still limited by the amount of production by the plants and constantly use more. The goal of our experiment is to introduce a secondary cell wall cellulose synthase complex into the primary cell wall to ultimately increase the production of cellulose in plants. Our hope is that if we use a primary cell wall promoter followed by secondary CesA’s (Cellulose Synthases) in Arabidopsis thaliana, we can produce more cellulose and create stronger plants.
 +
 
</p>
</p>
<h2 style="color: green" ID="Back"> Background</h2>
<h2 style="color: green" ID="Back"> Background</h2>
             <p>
             <p>
-
        ...
+
        Cellulose is produced in both the primary and secondary plant cell walls. Research has shown that secondary cellulose synthase (CesA) complexes produce greater quantities of cellulose than those located in the primary cell wall. (1) Additionally, research indicates the possibility of a hybrid plant cell wall through the ability to exchange promoters for cellulose synthase genes. An intricate protein complex in nature, research of cellulose synthase is continually ongoing. Due to the limited amount of definitive information known about the complex, the synthesis of a hybrid plant cell wall would provide verification of standing hypotheses and valuable novel information.
 +
</p>
 +
 
 +
<img style="border-radius: 10%; margin: 10px;" src="http://academic.brooklyn.cuny.edu/biology/bio4fv/page/cellulose-fibers.jpg"/>
 +
 
 +
 
 +
                <p>
 +
(1) http://mplant.oxfordjournals.org/content/4/2/199.full
</p>
</p>
<h2 style="color: green" ID="Meth"> Method </h2>
<h2 style="color: green" ID="Meth"> Method </h2>
             <p>
             <p>
-
...
+
To assemble our construct, we isolated the CesA 1 Promoter from Arabidopsis thaliana by extracting the genomic DNA and using PCR amplification. The CesA 4, 7, and 8 genes were obtained from cDNA via the Arabidopsis Biological Resource Center and tissue samples. PCR amplification from vector pDMC107 enabled the isolation of GFP and NOS terminator. Ultimately, the construct was tied together via Gibson assembly synthesising all tags and markers from the primers used.  
-
</p>
+
-
<h2 style="color: green" ID="Result"> Results</h2>
+
-
            <p>
+
-
...
+
-
</p>
+
-
<h2 style="color: green" ID="Discuss"> Discussion </h2>
+
-
            <p>
+
-
...
+
</p>
</p>
 +
 +
<img style="border-radius: 10%; margin: 10px;" src="http://i.imgur.com/bkiO7U7.png"/>
 +
 +
                 <h2 style="color: green" ID="FS"> Further Study </h2>
                 <h2 style="color: green" ID="FS"> Further Study </h2>
             <p>
             <p>
-
...
+
Due to limitations resulting from the lack of previous synthetic biology application within plants, we were unable to obtain any results. We have successfully isolated the desired CesA 1 promoter, CesA genes 7 and 8 and the Nos terminator parts. However, we were not able to isolate the CesA 4 gene needed for assembly of the plasmid. Thus successful construct assembly of these parts is still needed for bacterial and plant transformation. Following promising transformation, fluorescence testing and characterization must be done.
</p>
</p>
Line 203: Line 228:
</div>
</div>
-
 
+
<div ID="climb">
 +
<p><a href="#top" style="color: green">Back to top</a></p>
 +
</div>
      
      
 +
     
     <a href="/Team:Penn_State">
     <a href="/Team:Penn_State">
-
       <div class="A">
+
       <div class="A", ID="Home">
           <p class="B"> Home</p>
           <p class="B"> Home</p>
       </div>
       </div>
Line 225: Line 253:
     <a href="/Team:Penn_State/PromoterProject">
     <a href="/Team:Penn_State/PromoterProject">
       <div class="A", ID="Promoter">
       <div class="A", ID="Promoter">
-
           <p class="B"> Promoter Project</p>
+
           <p class="B"> Promoter</p>
 +
          <p class="B"> Project </p>
       </div>
       </div>
     </a>
     </a>
Line 232: Line 261:
     <a href="/Team:Penn_State/Cas9Project">
     <a href="/Team:Penn_State/Cas9Project">
       <div class="A", ID="Cas9">
       <div class="A", ID="Cas9">
-
           <p class="B"> Cas9 Project</p>
+
           <p class="B"> Cas9</p>
 +
          <p class="B"> Project </p>
       </div>
       </div>
     </a>
     </a>
Line 238: Line 268:
     <a href="/Team:Penn_State/CesaProject">
     <a href="/Team:Penn_State/CesaProject">
       <div class="A", ID="Cesa">
       <div class="A", ID="Cesa">
-
           <p class="B"> Cesa Project</p>
+
           <p class="B"> CesA </p>
 +
          <p class="B"> Project </p>
       </div>
       </div>
     </a>
     </a>
Line 244: Line 275:
     <a href="/Team:Penn_State/ButanolProject">
     <a href="/Team:Penn_State/ButanolProject">
       <div class="A", ID="Butanol">
       <div class="A", ID="Butanol">
-
           <p class="B"> Butanol Project</p>
+
           <p class="B"> Butanol</p>
 +
          <p class="B"> Project </p>
       </div>
       </div>
     </a>
     </a>
Line 250: Line 282:
     <a href="/Team:Penn_State/VanillinProject">
     <a href="/Team:Penn_State/VanillinProject">
       <div class="A", ID="Vanillin">
       <div class="A", ID="Vanillin">
-
           <p class="B"> Vanillin Project</p>
+
           <p class="B"> Vanillin </p>
 +
          <p class="B"> Project </p>
       </div>
       </div>
     </a>
     </a>

Latest revision as of 20:57, 26 September 2013

Cellulose Synthase (Cesa) Project

Cellulose is the most abundant polysaccharide on Earth and is incredibly valuable for multiple uses including paper, cellophane, and biofuel. Although cellulose in everywhere, we are still limited by the amount of production by the plants and constantly use more. The goal of our experiment is to introduce a secondary cell wall cellulose synthase complex into the primary cell wall to ultimately increase the production of cellulose in plants. Our hope is that if we use a primary cell wall promoter followed by secondary CesA’s (Cellulose Synthases) in Arabidopsis thaliana, we can produce more cellulose and create stronger plants.

Introduction

Cellulose is the most abundant polysaccharide on Earth and is incredibly valuable for multiple uses including paper, cellophane, and biofuel. Although cellulose in everywhere, we are still limited by the amount of production by the plants and constantly use more. The goal of our experiment is to introduce a secondary cell wall cellulose synthase complex into the primary cell wall to ultimately increase the production of cellulose in plants. Our hope is that if we use a primary cell wall promoter followed by secondary CesA’s (Cellulose Synthases) in Arabidopsis thaliana, we can produce more cellulose and create stronger plants.

Background

Cellulose is produced in both the primary and secondary plant cell walls. Research has shown that secondary cellulose synthase (CesA) complexes produce greater quantities of cellulose than those located in the primary cell wall. (1) Additionally, research indicates the possibility of a hybrid plant cell wall through the ability to exchange promoters for cellulose synthase genes. An intricate protein complex in nature, research of cellulose synthase is continually ongoing. Due to the limited amount of definitive information known about the complex, the synthesis of a hybrid plant cell wall would provide verification of standing hypotheses and valuable novel information.

(1) http://mplant.oxfordjournals.org/content/4/2/199.full

Method

To assemble our construct, we isolated the CesA 1 Promoter from Arabidopsis thaliana by extracting the genomic DNA and using PCR amplification. The CesA 4, 7, and 8 genes were obtained from cDNA via the Arabidopsis Biological Resource Center and tissue samples. PCR amplification from vector pDMC107 enabled the isolation of GFP and NOS terminator. Ultimately, the construct was tied together via Gibson assembly synthesising all tags and markers from the primers used.

Further Study

Due to limitations resulting from the lack of previous synthetic biology application within plants, we were unable to obtain any results. We have successfully isolated the desired CesA 1 promoter, CesA genes 7 and 8 and the Nos terminator parts. However, we were not able to isolate the CesA 4 gene needed for assembly of the plasmid. Thus successful construct assembly of these parts is still needed for bacterial and plant transformation. Following promising transformation, fluorescence testing and characterization must be done.

Home

Team

Notebook

Promoter

Project

Cas9

Project

CesA

Project

Butanol

Project

Vanillin

Project

Parts

Human Practices

Attributions