Team:Kyoto/ProjectTuring

From 2013.igem.org

(Difference between revisions)
(Introduction)
(Introduction)
Line 73: Line 73:
【日本語】
【日本語】
-
「Turing patternは、エニグマの解読などで知られる数学者A.Turingによる偉業の1つである。彼は数学者としての目線から、動物の体表にあるpattern形成の謎を解こうとし、Turing patternにいたった。Turingいわく、動物の体表のpatternもTuring patternに含まれるという。まだ完全に実証されたわけではないが、現に日本の近藤滋教授などによって、自然界におけるTuring patternの存在が再評価されつつある。」
 
-
「エニグマの解読などで知られる数学者A.Turing。彼の偉業の1つにTuring modelの考案がある。彼は数学者としての目線から、動物の体表にある模様の形成の謎(エニグマ)を解こうとした。その結果彼が到達したのがTuring modelなのである。Turingいわく、動物の体表の模様もTuring patternに含まれるという。まだ完全に実証されたわけではないが、現に日本の近藤滋教授などによって、自然界におけるTuring patternの存在が再評価されつつある。」
+
「エニグマの解読などで知られる数学者A.Turing。彼の偉業の1つにTuring modelの考案がある。彼は数学者としての目線から、動物の体表にある模様の形成の謎を解こうとした。その結果彼が到達したのがTuring modelなのである。Turingいわく、動物の体表の模様もTuring patternに含まれるという。まだ完全に実証されたわけではないが、現に日本の近藤滋教授などによって、自然界におけるTuring patternの存在が再評価されつつある。」
Turing patternとはある種の数学モデルであり、「相互作用する2つの仮想因子」によってpatternを形成する。「相互作用する2つの仮想因子」とは拡散する因子であり、一方は自己と他方の増加を促進し、もう一方が他方の増加を抑制するというものだ。
Turing patternとはある種の数学モデルであり、「相互作用する2つの仮想因子」によってpatternを形成する。「相互作用する2つの仮想因子」とは拡散する因子であり、一方は自己と他方の増加を促進し、もう一方が他方の増加を抑制するというものだ。

Revision as of 23:05, 26 September 2013

count down

Contents

Turing Model -the problems between wet and dry-

Motivation

Turing pattern is a theme which some teams of iGEM have already been working on. However, all of them have stopped at the dry step, and no team has actually succeeded in creating a pattern so far. What is the reason? This year, iGEM Kyoto considered the formation of Turing pattern, and attempted to span dry and wet approaches with a bridge.

Introduction

Turing Pattern is one of the achievements by a mathematician A. Turing. From a mathematical viewpoint, he tried to solve the enigma of how the animal skin pattern is formed. Inspired by this trial Turing model was proposed. According to Turing, the animals’ skin pattern can be explained by a simple model. S. Kondo suggests that Turing pattern is existent in the natural world, though it has not yet been completely proved.<

Turing pattern is a kind of a mathematic model. Let’s imagine two diffusible substances which interact with each other. Among these two diffusible factors, one activates itself and the other, and the other represses itself.

The two diffusible substances increase and decrease through interaction and create a difference in the density. This shading in the density causes the Turing pattern.

Turing model is an abstract mathematic model. In order to understand intuitively, let me set a field divided into many cell units. In each cell there are the diffusible substances. Let’s consider how a pattern is formed here. Firstly, you focus on only one cell unit.

Each of the two diffusible substances have two characters as we mentioned: interaction affects to the amount of substances themselves and diffusibility.

Affecting the density by in-flow and out-flow to the cell unit by a diffusion velocity peculiar to the substance (fig)

Turing arranged these two factors and established the Reaction-diffusion equation below.

(便宜上2つの仮想因子をそれぞれA,Bと呼ぶ事とする)よう(図)。

How is the difference between the two diffusion substances formed?


The nature of the diffusion substances are “diffusion”, and “increase and decrease by interaction”. Therefore, the density of the diffusion substances change little by little by the “increase and decrease by the interaction” and the “in-flow and out-flow by the diffusion”

“The increase and decrease by the interaction” is a diffusion velocity peculiar to each factor, and affects the density by flowing into and out of the cell units. Another characteristic of the Turing pattern is that the width of the pattern changes depending on the difference between the diffusion velocities.

どのようなpatternかが決まるのである。 So, the difference in the density created from the interaction of the two diffusion substances form the pattern, and the “difference of the diffusion velocity” defines the width. As I’ve said before, A. Turing is a mathematician. However, I hadn’t listed any formulas because I wanted you to understand at least the image of the Turing pattern first. Of course, Turing presented the pattern formation by using some formula. Now, let’s check out the “Reaction- diffusion equations” (2つの仮想因子をそれぞれA,Bと名づける)

I believe it’s difficult to understand the content of these formulae, so I’ll explain briefly.

The Reaction-diffusion equation shows the increase and decrease of the two diffusion substances in the fixed domain (i) of the space where the pattern is formed.

Kiα, Kiβ, Kiγは領域iにおいてそれぞれ仮想因子が相互作用する際の増減変化の定数であり、これらは全て任意の領域iにおいて常に一定である。 DiA and DiB stands for the constant peculiar to each of the diffusion substances, and shows the diffusionのしやすさ。

すなわち、ある時間の微小領域における2つの仮想因子A, Bの存在量に応じて、その両方が微小時間後にどう増減するかを表しているのだ。 In other words,


We focused on three constants, Kiα,Kiβ, and Kiγ in this formula. これらはTuring pattern形成の為に「任意の領域iにおいて常に一定である」という前提がある。

しかし大腸菌でTuring patternを形成する際には、これらは本当に任意のiにおいて常に一定だろうか。 However, when we form a Turing pattern by E.coli,, can these constants really stay at a fixed number at any domain (i)?

We considered that this pattern formation may not function in wet. This is because when we realize the Turing pattern by using E.coli, the increase of both A and B is caused by the synthesis of E.coli. Therefore, the variation velocity of both A and B might be dependent on the density of the E.coli in 一定領域内

「一定領域内の大腸菌密度」に「A,Bの増減速度」が依存してしまうからである。

大腸菌が定常状態に至るまではまばらに生育している限り、どうしても大腸菌密度に差が生じてしまう。この密度差によって、「Kiα, Kiβ, Kiγ」がiによって異なると考えられるのだ。 それではこの「Kiα, Kiβ, Kiγ」の差は無視出来るものだろうか。これを確認するための実験系を考えた。dryとwetとの差を埋めるために、私たちはこの実験をdryと本実験との間に行うことを提案する。


【日本語】


「エニグマの解読などで知られる数学者A.Turing。彼の偉業の1つにTuring modelの考案がある。彼は数学者としての目線から、動物の体表にある模様の形成の謎を解こうとした。その結果彼が到達したのがTuring modelなのである。Turingいわく、動物の体表の模様もTuring patternに含まれるという。まだ完全に実証されたわけではないが、現に日本の近藤滋教授などによって、自然界におけるTuring patternの存在が再評価されつつある。」

Turing patternとはある種の数学モデルであり、「相互作用する2つの仮想因子」によってpatternを形成する。「相互作用する2つの仮想因子」とは拡散する因子であり、一方は自己と他方の増加を促進し、もう一方が他方の増加を抑制するというものだ。 (図) このような性質を持つ2つの仮想因子が相互作用しあいながら増減し、その結果として因子の濃度にムラが生まれ、仮想因子の密度の濃淡によってpatternが浮かびあがるというのがTuring patternの略図である。 (図) Turing modelはあくまでも数学モデルである。これを直感的に把握するため、実際にある空間を仮定してpatternがいかにして形成されるかを考えてみよう。まずは解りやすくするために、空間を下図のようにいくつものcell unitに分割し、1つのcell unitについてのみ考えよう。 (図) 2つの仮想因子の濃度のムラはどのようにして形成されるだろうか。仮想因子の性質を思い出してみると「拡散し」「相互作用によって増減する」とある。つまり「相互作用による増減」と「拡散による流出入」によって仮想因子の濃度が刻一刻と変化するのだ。「相互作用による増減」はそれぞれの因子に固有の反応速度で、促進・抑制しあう。 (図) そして「拡散による流出入」もそれぞれの因子に固有の拡散速度でcell unitの中に流出入しながらその濃度に影響を与える。 (図) この2つの要素を、Turingは下に表す「反応拡散方程式」にまとめた。(便宜上2つの仮想因子をそれぞれA,Bと呼ぶ事とする)

(反応拡散方程式)

この2式を少し見ただけでは解りづらいと思うので、簡単な説明を加える。先ほど述べたように反応拡散方程式は、patternが形成される空間の、ある一定領域(i)における2つの仮想因子の増減を表している。 (図) Ki, Ki’, Ki’’は領域iにおいてそれぞれ仮想因子が相互作用する際の増減変化の定数であり、これらは全て任意の領域iにおいて常に一定である。DiA, DiBはそれぞれの仮想因子に固有の「拡散しやすさ」を表す定数である。すなわち、反応拡散方程式はある時間の微小領域における2つの仮想因子A, Bの存在量に応じて、その両方が微小時間後にどう増減するかを表しているのだ。 (図) 私たちが今回目をつけたのは、この両式の中での「Ki, Ki’, Ki’’」という定数である。これらはTuring pattern形成の為に「任意の領域iにおいて常に一定である」という前提がある。 (図) しかし大腸菌でTuring patternを形成する際には、これらは本当に任意のiにおいて常に一定だろうか。ここで私たちはwetにおいては成り立たない場合が生じてくると考えた。というのも、このTuring patternを大腸菌で実現しようとした時、A,Bが増加するのは大腸菌の合成によってであるため、「一定領域内の大腸菌密度」に「A,Bの増減速度」が依存してしまうからである。 大腸菌が定常状態に至るまではまばらに生育している限り、どうしても大腸菌密度に差が生じてしまう。この密度差によって、「Ki, Ki’, Ki’’」がiによって異なると考えられるのだ。 (図) それではこの「Ki, Ki’, Ki’’」の差は無視出来るものだろうか。これを確認するための実験系を考えた。dryとwetとの差を埋めるために、私たちはこの実験をdryと本実験との間に行うことを提案する。 (図)

idea

Discussion

conclusion

Introduction

・大腸菌の増減をファクターの一つとして扱うと、チューリングが提唱したものと違ってしまう上に、計算式がとても解きづらいものとなってしまう
・このモデルでも縞ができるという可能性は否定できないものの、チューリングが提唱し、主だったシミュレータが計算しているモデルとは根本的に異なる
・そのため、「真のチューリングパターン」を再現しようと考えた場合、チューリングパターンを成立させる条件に加えて、以下のような条件が考えられる

  • 大腸菌はシャーレ上に一様に分布している
  • 単一の種類の大腸菌が、因子の量の多少によって二つのStateを取りうる
  • 単一の大腸菌が、相互作用する二つの因子を分泌してシャーレ上に拡散できる

ここで、片方の因子がもう片方の因子の生産分泌速度に影響を与える(大腸菌の菌体数に影響を与えない)というモデルは、タンパク質の生産量やそれにかかる時間がシャーレ上のどの場所でも、また二つのタンパク質のどちらもで同一であるという近似の上では、プロモータと転写調節因子を挟んで生産させることで表現できる。 ・この実験系が成り立つかどうかについて、この条件を満たすタンパク質はとても少ないものの、細胞側の条件は別のタンパク質によって確認することが可能だろう

Assay

細胞の増殖状況によってタンパク質の発現レベルがシャーレ上で一定かどうか確認するために、GFPの蛍光強度を測定する

Result

Reference

The chemical basis of morphogenesis --A.M. Turing