Team:Hong Kong HKUST/experiment/exp4

From 2013.igem.org

(Difference between revisions)
Line 146: Line 146:
h3.title{font-size:40px;}
h3.title{font-size:40px;}
#hey{font-size:28px;margin-left:10px;font-family:"Trebuchet MS", Helvetica, sans-serif;}
#hey{font-size:28px;margin-left:10px;font-family:"Trebuchet MS", Helvetica, sans-serif;}
 +
 +
</style>
 +
<style>
 +
.pos_fixed
 +
{
 +
position:fixed;
 +
top:150px;
 +
left:10px;
 +
}
 +
 +
ol.pos_fixed
 +
{
 +
list-style-type:none;
 +
margin:0;
 +
padding:0;
 +
}
 +
.pos_fixed a:link,.pos_fixed a:visited
 +
{
 +
display:block;
 +
font-weight:bold;
 +
color:#494042;
 +
background-color:#35BB91;
 +
width:120px;
 +
text-align:center;
 +
padding:4px;
 +
text-decoration:none;
 +
;
 +
}
 +
.pos_fixed a:hover,.pos_fixed a:active
 +
{
 +
background-color:#35BB91;
 +
}
</style>
</style>
</head>
</head>
<body>
<body>
 +
<ol class="pos_fixed">
 +
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/hp/https://2013.igem.org/Team:Hong_Kong_HKUST/experiment/exp4">Glyoxylate Shunt</a></li>
 +
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/experiment/exp3">Protein Trafficking</a></li>
 +
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/experiment/exp2">FA Sensing Mechanism</a></il>
 +
<li><a href="https://2013.igem.org/Team:Hong_Kong_HKUST/experiment/exp1">Cell Viability & FA Quantifictaion</a></il>
 +
</ol>
<a href=https://2013.igem.org/Team:Hong_Kong_HKUST><center><div id="kepala"><img src="https://static.igem.org/mediawiki/igem.org/c/c7/BANNER1_%281%29.png" style="height:121px;width:100%;"></div></center></a>
<a href=https://2013.igem.org/Team:Hong_Kong_HKUST><center><div id="kepala"><img src="https://static.igem.org/mediawiki/igem.org/c/c7/BANNER1_%281%29.png" style="height:121px;width:100%;"></div></center></a>

Revision as of 20:44, 27 September 2013

  1. Glyoxylate Shunt
  2. Protein Trafficking
  3. FA Sensing Mechanism
  4. Cell Viability & FA Quantifictaion



Glyoxylate Shunt


Overview

Our artificial futile cycle is driven by the expression of two key enzymes in glyoxylate cycle. Since mammalian cells lack genes expressing glyoxylate shunt, we introduce these genes from E. coli and assemble them in a constitutive construct that will allow the expression of prokaryotic gene in eukaryotic cell. In addition to the constitutive system, we will also assemble an inducible construct which will allow tunable gene expression according to the concentration of fatty acid in the medium. We decided to introduce inducible system to prevent fatty acid deficiency in low concentration of plasma fatty acid and facilitate greater fatty acid uptake at a high circulating fatty acid levels. The inducible and constitutive system will be compared in terms of fatty acid uptake rate in a range concentration of fatty acid.

Construct

The two key enzymes of glyoxylate system are isocitrate lyase and malate synthase. These two enzymes are encoded by aceA and aceB genes, respectively. We planned to assemble aceA and aceB construct in one vector plasmid to minimize the possibility of mosaic expression of isocitrate lyase and malate synthase throughout the cell line. The mosaic expression can be caused by cell transfection with only either aceA-containing plasmid or aceB-containing plasmid. The constitutive system will be fused with a mammalian constitutive promoter, a mitochondrial leader sequence, a tagging protein and a polyadenylation sequence. Mitochondrial leader sequence is needed for protein translocation to the mitochondria. Tagging protein is essential for detecting the protein expression by means of western blot. Polyadenylation site enhances the gene expression as it is transfected into a mammalian where post-transcription modification exists. aceA and aceB construct will be assembled separately in different plasmid before being combined into one plasmid.

ACEA Construct

Backbone For ACEA construct, we decided to use a commercial plasmid called pShooter/myc/mito (Invitrogen). The vector is designed for expression in mammalian cell. In addition, the vector already contains mitochondrial leader sequence (MLS), a constitutive CMV promoter, Myc tag protein and polyadenylation site.

A Sneak Peek of Our Blog




CLICK HERE TO VISIT OUR BLOG!