Team:Virginia/Project Overview

From 2013.igem.org

(Difference between revisions)
Line 260: Line 260:
<div id="groupbio">
<div id="groupbio">
<div id="btext">
<div id="btext">
-
<p> <p style="text-indent: 5em;">Even a miracle drug that cures all cancers, bacteria that clear plaque from coronary arteries and viruses that amend errors in the human genome mean nothing if they cannot be administered in a safe and non-toxic manner. Because of this concern, it is imperative for ambitious synthetic biologists and IGEM teams to first address this issue of safety. Many promising treatments fall short when put to the test in vivo due to one or more issues with any of the following: toxicity, poor pharmacokinetics and ineffective delivery. For these reasons, there is a significant need for versatile delivery vehicles capable of carrying therapies to select targets while minimizing adverse side effects. Such vectors could render those common hindrances inconsequential, offering new hope to a myriad of abandoned drugs and improving the efficacy of future ones. </p>
+
<p><b><u> The Problem </b></u></p>
 +
<p> <p style="text-indent: 5em;">There has always been public concern over the safety of synthetic biology projects. Many of these concerns result from the possibility that bacteria may replicate or mutate beyond a scientist’s control. Many efforts to increase the biosafety of bacteria chassis have thus focused on engineering more reliable kill-switches or on reducing the expression of certain genes. We present bacterial minicells as a safe, alternative chassis that cannot proliferate (for lack of chromosomal DNA), but that still retain surface proteins from the parent cell and their ability to express plasmid DNA. </p>
<p><p style="text-indent: 5em;">This year, Team Virginia sought to develop a safe and modular E. coli delivery-chassis that could be easily incorporated into a variety of other projects, making the many advantages listed above widely available. Our initial investigation led us to a forgotten discovery from the 1950’s—the bacterial minicell. Originally looked into for their potential as safer vaccines, minicell research dwindled over time due to lagging microbiological and genetic technology. While largely neglected for decades, minicells are only now resurfacing, in the wake of the recent, explosive growth of the modern biotechnology industry. As an intermediate between artificially constructed liposomes and live bacteria,a minicell captures the best qualities of both existing platforms, while lacking many of their worst features. Without a doubt, minicells are poised to become a game-changing vehicle for novel therapies.</p>  
<p><p style="text-indent: 5em;">This year, Team Virginia sought to develop a safe and modular E. coli delivery-chassis that could be easily incorporated into a variety of other projects, making the many advantages listed above widely available. Our initial investigation led us to a forgotten discovery from the 1950’s—the bacterial minicell. Originally looked into for their potential as safer vaccines, minicell research dwindled over time due to lagging microbiological and genetic technology. While largely neglected for decades, minicells are only now resurfacing, in the wake of the recent, explosive growth of the modern biotechnology industry. As an intermediate between artificially constructed liposomes and live bacteria,a minicell captures the best qualities of both existing platforms, while lacking many of their worst features. Without a doubt, minicells are poised to become a game-changing vehicle for novel therapies.</p>  

Revision as of 00:51, 28 September 2013

VGEM Welcomes You!

The Problem

There has always been public concern over the safety of synthetic biology projects. Many of these concerns result from the possibility that bacteria may replicate or mutate beyond a scientist’s control. Many efforts to increase the biosafety of bacteria chassis have thus focused on engineering more reliable kill-switches or on reducing the expression of certain genes. We present bacterial minicells as a safe, alternative chassis that cannot proliferate (for lack of chromosomal DNA), but that still retain surface proteins from the parent cell and their ability to express plasmid DNA.

This year, Team Virginia sought to develop a safe and modular E. coli delivery-chassis that could be easily incorporated into a variety of other projects, making the many advantages listed above widely available. Our initial investigation led us to a forgotten discovery from the 1950’s—the bacterial minicell. Originally looked into for their potential as safer vaccines, minicell research dwindled over time due to lagging microbiological and genetic technology. While largely neglected for decades, minicells are only now resurfacing, in the wake of the recent, explosive growth of the modern biotechnology industry. As an intermediate between artificially constructed liposomes and live bacteria,a minicell captures the best qualities of both existing platforms, while lacking many of their worst features. Without a doubt, minicells are poised to become a game-changing vehicle for novel therapies.