Team:NTU Taiwan/index.html

From 2013.igem.org

(Difference between revisions)
 
(12 intermediate revisions not shown)
Line 1: Line 1:
-
 
<html lang="en">
<html lang="en">
<head>
<head>
-
     <title> Igem-Taiwan </title>
+
     <title> iGEM-NTU-Taiwan </title>
     <meta name="viewport" content="width=device-width, initial-scale=1.0">
     <meta name="viewport" content="width=device-width, initial-scale=1.0">
     <meta http-equiv="X-UA-Compatible" content="IE=edge">
     <meta http-equiv="X-UA-Compatible" content="IE=edge">
Line 200: Line 199:
                 <span class="particle particle--b"></span>
                 <span class="particle particle--b"></span>
             </div>
             </div>
-
             <h1 class=" rainbow-text header">IGem-Taiwan Yeastherm</h1>
+
             <h1 class=" rainbow-text header">iGEM-NTU-Taiwan YeasTherm</h1>
             <p class="header container">
             <p class="header container">
                 <img class="spin" alt-src="images/LaboratoryLevels.png" src="/wiki/images/9/91/NTU_TAIWAN_LaboratoryLevels.png"><br/>
                 <img class="spin" alt-src="images/LaboratoryLevels.png" src="/wiki/images/9/91/NTU_TAIWAN_LaboratoryLevels.png"><br/>
                 National Taiwan University<br/>
                 National Taiwan University<br/>
-
                 Working with Thermogenic Yeast<br/>
+
                 Working on Thermogenic Yeast<br/>
-
                 Apps with knowledge of iGEM competition and synthetic biology.
+
                 Apps with concept of iGEM competition and synthetic biology.
             </p>
             </p>
         </section>
         </section>
Line 1,649: Line 1,648:
             <h1 class="header" style="margin: 0">Basic Research</h1>
             <h1 class="header" style="margin: 0">Basic Research</h1>
             <div class="container">
             <div class="container">
-
                 <p class="header" style="margin: 0"> our works </p>
+
                 <p class="header" style="margin: 0"> Our final goal is to express SrUCP in <i>Rhodotorula glutinis</i>. However, hampering by its difficulties in molecular cloning, we take <i>Saccharomyces cerevisiae</i> as our first-hand research material. </p>
                 <div id="beaker">
                 <div id="beaker">
                     <span class="bubble"><span class="glow">&nbsp;</span></span>
                     <span class="bubble"><span class="glow">&nbsp;</span></span>
Line 1,812: Line 1,811:
         </div>
         </div>
-
        <div id="Circuit">
+
-
            <section class="purple-background">
+
-
                <h1 class="header">Circuit</h1>
+
-
            </section>
+
-
 
+
-
            <div class="essay container divide">
+
-
               
+
-
            </div>
+
-
        </div>
+
         <div id="Suicide">
         <div id="Suicide">
Line 1,857: Line 1,848:
             <h1 class="header">Applications</h1>
             <h1 class="header">Applications</h1>
             <div class="container">
             <div class="container">
-
                <p class="header" style="margin: 0"></p>
+
              <p class="header" style="margin: 0"> Being an special lipid productive yeast, <i>Rhodotorula glutinis</i> has strong potentiality to become an extraordinary bio-heating device. Let's find out! </p>
                 <div id="beaker">
                 <div id="beaker">
                     <span class="bubble"><span class="glow">&nbsp;</span></span>
                     <span class="bubble"><span class="glow">&nbsp;</span></span>
Line 1,908: Line 1,899:
             </legend>
             </legend>
             <p>
             <p>
-
                 In hope of ?? the value of our biological heating device, we strive to improving the sensitivity of our sensor - the cold shock promoter. This final goal can be break down on two parts: 1. tuning the temperature-responsive range of cold shock promoter 2. amplifying its signal under low temperature. In order to understand what kind of structure of a genetic circuit and what kinds of characteristics of activator and repressor are needed for our purpose, we create several mathematical models to explore the problem. In the end, we expect to get some useful information as a guidance to screen possible biological parts when we actually start to construct the genetic circuit.
+
                 In hope of putting more values in our biological heating device, we strive to improving the sensitivity of our sensor - the cold shock promoter. This final goal can be break down on two parts: 1. tuning the temperature-responsive range of cold shock promoter 2. amplifying its signal under low temperature. In order to understand what kind of structure of a genetic circuit and what kinds of characteristics of activator and repressor are needed for our purpose, we create several mathematical models to explore the problem. In the end, we expect to get some useful information as a guidance to screen possible biological parts when we actually start to construct the genetic circuit.
             </p>
             </p>
         </div>
         </div>
Line 1,991: Line 1,982:
                         </tr>
                         </tr>
                         <tr class="row">
                         <tr class="row">
-
                             <td class="col-md-2">β<sub>Csp</sub>(T)<sup>a</sup></td>
+
                             <td class="col-md-2">β<sub>hsp</sub>(T)<sup>a</sup></td>
                             <td class="col-md-5">Maximal production rate of Hsp, a function of temperature</td>
                             <td class="col-md-5">Maximal production rate of Hsp, a function of temperature</td>
                             <td class="col-md-3">Sigmoidal curve <br/>(set 37℃=1e-6, 30℃=0) </td>
                             <td class="col-md-3">Sigmoidal curve <br/>(set 37℃=1e-6, 30℃=0) </td>
-
                             <td class="col-md-2">M/s, normalized</td>
+
                             <td class="col-md-2">M/s</td>
                         </tr>
                         </tr>
                         <tr class="row">
                         <tr class="row">
Line 2,171: Line 2,162:
         <div class="container">
         <div class="container">
          
          
-
         <br/><p><b>PCR</b></p><br/>
+
         <br/><p><b>PCR</b></p>
-
        &nbsp&nbsp&nbsp&nbsp&nbspStep 1: Design of appropriate forward and reverse primers<br/>
+
1: Design of appropriate forward and reverse primers<br/>
-
        &nbsp&nbsp&nbsp&nbsp&nbspStep 2: Prepare our template<br/>
+
2: Prepare our template<br/>
-
        &nbsp&nbsp&nbsp&nbsp&nbspStep 3: Prepare the PCR mix. (Kapa Hifi PCR kit.)<br/>
+
3: Prepare the PCR mix. (Kapa Hifi PCR kit.)<br/>
-
        &nbsp&nbsp&nbsp&nbsp&nbspStep 4: Run PCR<br/>
+
4: Run PCR<br/>
-
        &nbsp&nbsp&nbsp&nbsp&nbspStep 5: Examine the results by electrophoresis<br/>
+
5: Examine the results by electrophoresis<br/>
-
         Note: If the template is genomic DNA, we would adjust the annealing temperature at 45°C. It is because the copy number of target gene may be low. We use this annealing temp when perform PCR of Tir1, 26s, 5.8s ITS
+
         Note: If the template is genomic DNA, we would adjust the annealing temperature at 45°C. It is because the copy number of target gene may be low. We use this annealing temp when perform PCR of Tir1, 26s, 5.8s ITS<br/><br/>
-
<br/><p><b>Construction of our parts</b></p><br/>
+
<br/><p><b>Construction of our parts</b></p><p>
-
        &nbsp&nbsp&nbsp&nbsp&nbspStep 1: We design primers for parts with prefix and suffix.<br/>
+
1: We design primers for parts with prefix and suffix.<br/>
-
        &nbsp&nbsp&nbsp&nbsp&nbspStep 2: Perform PCR and cleanup the PCR product<br/>
+
2: Perform PCR and cleanup the PCR product<br/>
-
        &nbsp&nbsp&nbsp&nbsp&nbspStep 3: Before insert our parts into standard backbone, pSB1C3, we perform RE digestion to make sticky ends of both inserts and backbones.<br/>
+
3: Before insert our parts into standard backbone, pSB1C3, we perform RE digestion to make sticky ends of both inserts and backbones.<br/>
-
        &nbsp&nbsp&nbsp&nbsp&nbspStep 4: Ligation of inserts and backbones<br/>
+
4: Ligation of inserts and backbones<br/>
-
        &nbsp&nbsp&nbsp&nbsp&nbspStep 5: Transform our ligation products into DH5α and streak the transformed DH5α on LB agar plate with chloramphenicol.<br/>
+
5: Transform our ligation products into DH5α and streak the transformed DH5α on LB agar plate with chloramphenicol.<br/>
-
        &nbsp&nbsp&nbsp&nbsp&nbspStep 6: Inoculate single colony into broth with chloramphenicol.<br/>
+
6: Inoculate single colony into broth with chloramphenicol.<br/>
-
        &nbsp&nbsp&nbsp&nbsp&nbspStep 7: Miniprep the plasmid DNA from the overnight broth culture.<br/>
+
7: Miniprep the plasmid DNA from the overnight broth culture.<br/>
-
        &nbsp&nbsp&nbsp&nbsp&nbspStep 8: Confirm the products by both RE digestion and PCR sequencing<br/>
+
8: Confirm the products by both RE digestion and PCR sequencing<br/></p>
         <p><b>Point mutation protocol</b></p>
         <p><b>Point mutation protocol</b></p>
Line 2,281: Line 2,272:
                 <p>For estimate the heat-production ability of the SrUCP in yeast. We built up a straight way to analyze it. </p>
                 <p>For estimate the heat-production ability of the SrUCP in yeast. We built up a straight way to analyze it. </p>
                 <p>After both experimental group (pRS424-GAL1-SrUCP-TAP) and negative control group (pRS424-GAL1∆) induced by 2% galactose for 21 hours, we couldn’t find out statistical difference between control and experimental group by our first experimental method. Most of the heat production is come from the fermentation and shaking of the incubator.</p>
                 <p>After both experimental group (pRS424-GAL1-SrUCP-TAP) and negative control group (pRS424-GAL1∆) induced by 2% galactose for 21 hours, we couldn’t find out statistical difference between control and experimental group by our first experimental method. Most of the heat production is come from the fermentation and shaking of the incubator.</p>
-
                 <p>However, we didn’t analyze the quantity of yeasts during the experiment. We consider that the experimental group (which had been transformed SrUCP) might grow slower than the control group and then cause the result t I show below:
+
                 <p>However, we didn’t analyze the quantity of yeasts during the experiment. We consider that the experimental group (which had been transformed SrUCP) might grow slower than the control group and then cause the result t I show below:<br/>
-
                     Experimental: Heat(E) = Fermentation(1) + SrUCP
+
                     Experimental: Heat(E) = Fermentation(1) + SrUCP<br/>
-
                     Control: Heat(C) = Fermentation(2)
+
                     Control: Heat(C) = Fermentation(2)<br/>
                     Because the heat of fermentation(1) is lower than fermentation(2), even if SrUCP produce heat, the total Heat(E) equal to Heat(C).
                     Because the heat of fermentation(1) is lower than fermentation(2), even if SrUCP produce heat, the total Heat(E) equal to Heat(C).
                     In hence, the better method to test heat production is incubate in isothermal environment or use the isothermal titration calorimetry. We will try these more precise method.
                     In hence, the better method to test heat production is incubate in isothermal environment or use the isothermal titration calorimetry. We will try these more precise method.
Line 2,293: Line 2,284:
             <div class="container essay">
             <div class="container essay">
-
                 <img src="https://www.dropbox.com/s/wtpek4rg4x1s8vt/Capture2.JPG" alt-src="images/Capture2.jpg">
+
                 <img src="https://static.igem.org/mediawiki/2013/2/2f/NTU_TAIWAN_Capture2.JPG" alt-src="images/Capture2.jpg">
-
                 <img src="https://www.dropbox.com/s/wtpek4rg4x1s8vt/Capture2.JPG" alt-src="images/Capture3.jpg">
+
                 <img src="https://static.igem.org/mediawiki/2013/5/52/NTU_TAIWAN_Capture3.JPG" alt-src="images/Capture3.jpg">
                 <p>To realize our ultimate goal, that is, to express SrUCP in Rhodotorula glutinis, we analyze this organism’s growth property. This information is useful for use to prepare the competent cell of Rhodotorula glutinis. This is the fundamental and important step to express exogenous gene in this species.</p>
                 <p>To realize our ultimate goal, that is, to express SrUCP in Rhodotorula glutinis, we analyze this organism’s growth property. This information is useful for use to prepare the competent cell of Rhodotorula glutinis. This is the fundamental and important step to express exogenous gene in this species.</p>
                 Results: <br/>
                 Results: <br/>

Latest revision as of 04:22, 28 September 2013

iGEM-NTU-Taiwan