Team:Valencia Biocampus/Demonstration/Diffusion2
From 2013.igem.org
(→Description of the numerical method) |
(→Description of the numerical method) |
||
Line 49: | Line 49: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | <span style="font-size: | + | <span style="font-size: 100%;">$$ \begin{bmatrix} |
\begin{array}{ccc|ccc|ccc} | \begin{array}{ccc|ccc|ccc} | ||
\alpha + \nu^{(1,0)}_{{x}_{1,1}} + \nu^{(0,1)}_{{y}_{1,1}} & - \lambda + \nu_{y_{1,1}} \; \mu & 0 & - \lambda + \nu_{x_{1,1}} \; \mu & 0 & 0 & 0 & 0 & 0\\ | \alpha + \nu^{(1,0)}_{{x}_{1,1}} + \nu^{(0,1)}_{{y}_{1,1}} & - \lambda + \nu_{y_{1,1}} \; \mu & 0 & - \lambda + \nu_{x_{1,1}} \; \mu & 0 & 0 & 0 & 0 & 0\\ | ||
Line 68: | Line 68: | ||
$$\begin{bmatrix} | $$\begin{bmatrix} | ||
\begin{array}{ccc|ccc|ccc} | \begin{array}{ccc|ccc|ccc} | ||
- | \beta - | + | \beta - \nu^{(1,0)}_{{x}_{1,1}} - \nu^{(0,1)}_{{y}_{1,1}} & \lambda - \nu_{y_{1,1}} \; \mu & 0 & \lambda - \nu_{x_{1,1}} \; \mu & 0 & 0 & 0 & 0 & 0\\ |
- | \lambda + \nu_{y_{1,2}} \; \mu & \beta - | + | \lambda + \nu_{y_{1,2}} \; \mu & \beta - \nu^{(1,0)}_{{x}_{1,2}} - \nu^{(0,1)}_{{y}_{1,2}} & \lambda - \nu_{y_{1,2}} \; \mu & 0 & \lambda - \nu_{x_{1,2}} \; \mu & 0 & 0 & 0 & 0\\ |
- | 0 & \lambda + \nu_{y_{1,3}} \; \mu & \beta - | + | 0 & \lambda + \nu_{y_{1,3}} \; \mu & \beta - \nu^{(1,0)}_{{x}_{1,3}} - \nu^{(0,1)}_{{y}_{1,3}} & 0 & 0 & \lambda - \nu_{x_{1,3}} \; \mu & 0 & 0 & 0\\ |
\hline\\ | \hline\\ | ||
- | \lambda + \nu_{x_{2,1}} \; \mu & 0 & 0 & \beta - | + | \lambda + \nu_{x_{2,1}} \; \mu & 0 & 0 & \beta - \nu^{(1,0)}_{{x}_{2,1}} - \nu^{(0,1)}_{{y}_{2,1}} & \lambda - \nu_{y_{2,1}} \; \mu & 0 & \lambda - \nu_{x_{2,1}} \; \mu & 0 & 0\\ |
- | 0 & \lambda + \nu_{x_{2,2}} \; \mu & 0 & \lambda + \nu_{y_{2,2}} \; \mu & \beta - | + | 0 & \lambda + \nu_{x_{2,2}} \; \mu & 0 & \lambda + \nu_{y_{2,2}} \; \mu & \beta - \nu^{(1,0)}_{{x}_{2,2}} - \nu^{(0,1)}_{{y}_{2,2}} & \lambda - \nu_{y_{2,2}} \; \mu & 0 & \lambda - \nu_{x_{2,2}} \; \mu & 0\\ |
- | 0 & 0 & \lambda + \nu_{x_{2,3}} \; \mu & 0 & \lambda + \nu_{y_{2,3}} \; \mu & \beta - | + | 0 & 0 & \lambda + \nu_{x_{2,3}} \; \mu & 0 & \lambda + \nu_{y_{2,3}} \; \mu & \beta - \nu^{(1,0)}_{{x}_{2,3}} - \nu^{(0,1)}_{{y}_{2,3}} & 0 & 0 & \lambda - \nu_{x_{2,3}} \; \mu\\ |
\hline\\ | \hline\\ | ||
- | 0 & 0 & 0 & \lambda + \nu_{x_{3,1}} \; \mu & 0 & 0 & \beta - | + | 0 & 0 & 0 & \lambda + \nu_{x_{3,1}} \; \mu & 0 & 0 & \beta - \nu^{(1,0)}_{{x}_{3,1}} - \nu^{(0,1)}_{{y}_{3,1}} & \lambda - \nu_{y_{3,1}} \; \mu & 0\\ |
- | 0 & 0 & 0 & 0 & \lambda + \nu_{x_{3,2}} \; \mu & 0 & \lambda + \nu_{y_{3,2}} \; \mu & \beta - | + | 0 & 0 & 0 & 0 & \lambda + \nu_{x_{3,2}} \; \mu & 0 & \lambda + \nu_{y_{3,2}} \; \mu & \beta - \nu^{(1,0)}_{{x}_{3,2}} - \nu^{(0,1)}_{{y}_{3,2}} & \lambda - \nu_{y_{3,2}} \; \mu\\ |
- | 0 & 0 & 0 & 0 & 0 & \lambda + \nu_{x_{3,3}} \; \mu & 0 & \lambda + \nu_{y_{3,3}} \; \mu & \beta - | + | 0 & 0 & 0 & 0 & 0 & \lambda + \nu_{x_{3,3}} \; \mu & 0 & \lambda + \nu_{y_{3,3}} \; \mu & \beta -\nu^{(1,0)}_{{x}_{3,3}} - \nu^{(0,1)}_{{y}_{3,3}} |
\end{array} | \end{array} | ||
\end{bmatrix}\begin{bmatrix} | \end{bmatrix}\begin{bmatrix} |
Revision as of 12:14, 29 September 2013
Description of the numerical method
The Crank-Nicolson method is obtained by using a forward difference in time ($t_k$) and central differences in space $(x_i, y_j)$.
However, by giving discrete values for time and space $(t_k, x_i, y_j)$ to our Crank-Nicolson method and zeroing boundary conditions (since we have to define some limit for the plate) and also setting initial conditions to a specific initial distribution, we achieved the matrix recursive formula:
$$[\mathcal{C}^{k+1}] = \mathcal{M}\;[\mathcal{C}^k]$$
Where $\mathcal{M}$ is a block tridiagonal matrix depending on the parameters and the velocities in $x$ and $y$ directions at some points in space.
1) The first step is to discretize our differential equation, replacing the time derivatives by the approximate forward differences and the space derivatives by central differences, being $\;q\;$ and $\;h\;$ the time and space step, respectively:
$$\; 2 \; \frac{C^{k+1}_{i,j} - C^{k}_{i,j}}{q}\;= \\ \;D \; \left(\frac{C^{k+1}_{i+1,j} - 2C^{k+1}_{i,j}+C^{k+1}_{i-1,j}}{h^2} + \frac{C^{k+1}_{i,j+1} - 2C^{k+1}_{i,j}+C^{k+1}_{i,j-1}}{h^2}\right) - \left(\frac{\nu_{x_{i+1,j}} - \nu_{x_{i-1,j}}}{2h} \; C^{k+1}_{i,j} + \nu_{x_{i,j}} \; \frac{C^{k+1}_{i+1,j} - C^{k+1}_{i-1,j}}{2h} + \frac{\nu_{y_{i,j+1}} - \nu_{y_{i,j-1}}}{2h} \; C^{k+1}_{i,j} + \nu_{y_{i,j}} \; \frac{C^{k+1}_{i,j+1} - C^{k+1}_{i,j-1}}{2h}\right) \\ + D \; \left(\frac{C^{k}_{i+1,j} - 2C^{k}_{i,j}+C^{k}_{i-1,j}}{h^2} + \frac{C^{k}_{i,j+1} - 2C^{k}_{i,j}+C^{k}_{i,j-1}}{h^2}\right) - \left(\frac{\nu_{x_{i+1,j}} - \nu_{x_{i-1,j}}}{2h} \; C^{k}_{i,j} + \nu_{x_{i,j}} \; \frac{C^{k}_{i+1,j} - C^{k}_{i-1,j}}{2h} + \frac{\nu_{y_{i,j+1}} - \nu_{y_{i,j-1}}}{2h} \; C^{k}_{i,j} + \nu_{y_{i,j}} \; \frac{C^{k}_{i,j+1} - C^{k}_{i,j-1}}{2h}\right)$$
Then, placing all (k+1) terms at left and (k) terms at right and recalling the constants $\;\lambda \; = \; \frac{q \; D}{2 \; h^2}\;$ and $\;\mu \; = \; \frac{q}{4 \; h}\;$ it results a more handy equation:
$$ C^{k+1}_{i+1,j} \; \left(- \lambda + \nu_{x_{i,j}} \; \mu \right) + C^{k+1}_{i,j+1} \; \left(- \lambda + \nu_{y_{i,j}} \; \mu \right) + C^{k+1}_{i,j} \; \left(1 + 4 \; \lambda + \nu^{(1,0)}_{{x}_{i,j}} + \nu^{(0,1)}_{{y}_{i,j}}\right) + C^{k+1}_{i-1,j} \; \left(- \lambda - \nu_{x_{i,j}} \; \mu \right) + C^{k+1}_{i,j-1} \; \left(- \lambda - \nu_{y_{i,j}} \; \mu \right) \; = \\ \; C^{k}_{i+1,j} \; \left(\lambda - \nu_{x_{i,j}} \; \mu \right) + C^{k}_{i,j+1} \; \left(\lambda - \nu_{y_{i,j}} \; \mu \right) + C^{k}_{i,j} \; \left(1 - 4 \; \lambda - \nu^{(1,0)}_{{x}_{i,j}} - \nu^{(0,1)}_{{y}_{i,j}}\right) + C^{k}_{i-1,j} \; \left(\lambda + \nu_{x_{i,j}} \; \mu \right) + C^{k}_{i,j-1} \; \left(\lambda + \nu_{y_{i,j}} \; \mu \right) $$
2) For being able to compute the method in a matrix way, we were forced to do a small cencrete example, in order to extrapolate then the procedure into a general method. For that, we meshed the space in three steps each coordinate, so that, i=1,2,3 and j=1,2,3:
$ i=1,\;j=1 $
$$ C^{k+1}_{2,1} \; \left(- \lambda + \nu_{x_{1,1}} \; \mu \right) + C^{k+1}_{1,2} \; \left(- \lambda + \nu_{y_{1,1}} \; \mu \right) + C^{k+1}_{1,1} \; \left(1 + 4 \; \lambda + \nu^{(1,0)}_{{x}_{1,1}} + \nu^{(0,1)}_{{y}_{1,1}}\right) + C^{k+1}_{0,1} \; \left(- \lambda - \nu_{x_{1,1}} \; \mu \right) + C^{k+1}_{1,0} \; \left(- \lambda - \nu_{y_{1,1}} \; \mu \right) \; = \\ \; C^{k}_{2,1} \; \left(\lambda - \nu_{x_{1,1}} \; \mu \right) + C^{k}_{1,2} \; \left(\lambda - \nu_{y_{1,1}} \; \mu \right) + C^{k}_{1,1} \; \left(1 - 4 \; \lambda - \nu^{(1,0)}_{{x}_{1,1}} - \nu^{(0,1)}_{{y}_{1,1}}\right) + C^{k}_{0,1} \; \left(\lambda + \nu_{x_{1,1}} \; \mu \right) + C^{k}_{1,0} \; \left(\lambda + \nu_{y_{1,1}} \; \mu \right) $$
$ i=1,\;j=2 $
$$ C^{k+1}_{2,2} \; \left(- \lambda + \nu_{x_{1,2}} \; \mu \right) + C^{k+1}_{1,3} \; \left(- \lambda + \nu_{y_{1,2}} \; \mu \right) + C^{k+1}_{1,2} \; \left(1 + 4 \; \lambda + \nu^{(1,0)}_{{x}_{1,2}} + \nu^{(0,1)}_{{y}_{1,2}}\right) + C^{k+1}_{0,2} \; \left(- \lambda - \nu_{x_{1,2}} \; \mu \right) + C^{k+1}_{1,1} \; \left(- \lambda - \nu_{y_{1,2}} \; \mu \right) \; = \\ \; C^{k}_{2,2} \; \left(\lambda - \nu_{x_{1,2}} \; \mu \right) + C^{k}_{1,3} \; \left(\lambda - \nu_{y_{1,2}} \; \mu \right) + C^{k}_{1,2} \; \left(1 - 4 \; \lambda - \nu^{(1,0)}_{{x}_{1,2}} - \nu^{(0,1)}_{{y}_{1,2}}\right) + C^{k}_{0,2} \; \left(\lambda + \nu_{x_{1,2}} \; \mu \right) + C^{k}_{1,1} \; \left(\lambda + \nu_{y_{1,2}} \; \mu \right) $$
$ i=1,\;j=3 $
$$ C^{k+1}_{2,3} \; \left(- \lambda + \nu_{x_{1,3}} \; \mu \right) + C^{k+1}_{1,4} \; \left(- \lambda + \nu_{y_{1,3}} \; \mu \right) + C^{k+1}_{1,3} \; \left(1 + 4 \; \lambda + \nu^{(1,0)}_{{x}_{1,3}} + \nu^{(0,1)}_{{y}_{1,3}}\right) + C^{k+1}_{0,3} \; \left(- \lambda - \nu_{x_{1,3}} \; \mu \right) + C^{k+1}_{1,2} \; \left(- \lambda - \nu_{y_{1,3}} \; \mu \right) \; = \\ \; C^{k}_{2,3} \; \left(\lambda - \nu_{x_{1,3}} \; \mu \right) + C^{k}_{1,4} \; \left(\lambda - \nu_{y_{1,3}} \; \mu \right) + C^{k}_{1,3} \; \left(1 - 4 \; \lambda - \nu^{(1,0)}_{{x}_{1,3}} - \nu^{(0,1)}_{{y}_{1,3}}\right) + C^{k}_{0,3} \; \left(\lambda + \nu_{x_{1,3}} \; \mu \right) + C^{k}_{1,2} \; \left(\lambda + \nu_{y_{1,3}} \; \mu \right) $$
$ i=2,\;j=1 $
$$ C^{k+1}_{3,1} \; \left(- \lambda + \nu_{x_{2,1}} \; \mu \right) + C^{k+1}_{2,2} \; \left(- \lambda + \nu_{y_{2,1}} \; \mu \right) + C^{k+1}_{2,1} \; \left(1 + 4 \; \lambda + \nu^{(1,0)}_{{x}_{2,1}} + \nu^{(0,1)}_{{y}_{2,1}}\right) + C^{k+1}_{1,1} \; \left(- \lambda - \nu_{x_{2,1}} \; \mu \right) + C^{k+1}_{2,0} \; \left(- \lambda - \nu_{y_{2,1}} \; \mu \right) \; = \\ \; C^{k}_{3,1} \; \left(\lambda - \nu_{x_{2,1}} \; \mu \right) + C^{k}_{2,2} \; \left(\lambda - \nu_{y_{2,1}} \; \mu \right) + C^{k}_{2,1} \; \left(1 - 4 \; \lambda - \nu^{(1,0)}_{{x}_{2,1}} - \nu^{(0,1)}_{{y}_{2,1}}\right) + C^{k}_{1,1} \; \left(\lambda + \nu_{x_{2,1}} \; \mu \right) + C^{k}_{2,0} \; \left(\lambda + \nu_{y_{2,1}} \; \mu \right) $$
$ i=2,\;j=2 $
$$ C^{k+1}_{3,2} \; \left(- \lambda + \nu_{x_{2,2}} \; \mu \right) + C^{k+1}_{2,3} \; \left(- \lambda + \nu_{y_{2,2}} \; \mu \right) + C^{k+1}_{2,2} \; \left(1 + 4 \; \lambda + \nu^{(1,0)}_{{x}_{2,2}} + \nu^{(0,1)}_{{y}_{2,2}}\right) + C^{k+1}_{1,2} \; \left(- \lambda - \nu_{x_{2,2}} \; \mu \right) + C^{k+1}_{2,1} \; \left(- \lambda - \nu_{y_{2,2}} \; \mu \right) \; = \\ \; C^{k}_{3,2} \; \left(\lambda - \nu_{x_{2,2}} \; \mu \right) + C^{k}_{2,3} \; \left(\lambda - \nu_{y_{2,2}} \; \mu \right) + C^{k}_{2,2} \; \left(1 - 4 \; \lambda - \nu^{(1,0)}_{{x}_{2,2}} - \nu^{(0,1)}_{{y}_{2,2}}\right) + C^{k}_{1,2} \; \left(\lambda + \nu_{x_{2,2}} \; \mu \right) + C^{k}_{2,1} \; \left(\lambda + \nu_{y_{2,2}} \; \mu \right) $$
$ i=2,\;j=3 $
$$ C^{k+1}_{3,3} \; \left(- \lambda + \nu_{x_{2,3}} \; \mu \right) + C^{k+1}_{2,4} \; \left(- \lambda + \nu_{y_{2,3}} \; \mu \right) + C^{k+1}_{2,3} \; \left(1 + 4 \; \lambda + \nu^{(1,0)}_{{x}_{2,3}} + \nu^{(0,1)}_{{y}_{2,3}}\right) + C^{k+1}_{1,3} \; \left(- \lambda - \nu_{x_{2,3}} \; \mu \right) + C^{k+1}_{2,2} \; \left(- \lambda - \nu_{y_{2,3}} \; \mu \right) \; = \\ \; C^{k}_{3,3} \; \left(\lambda - \nu_{x_{2,3}} \; \mu \right) + C^{k}_{2,4} \; \left(\lambda - \nu_{y_{2,3}} \; \mu \right) + C^{k}_{2,3} \; \left(1 - 4 \; \lambda - \nu^{(1,0)}_{{x}_{2,3}} - \nu^{(0,1)}_{{y}_{2,3}}\right) + C^{k}_{1,3} \; \left(\lambda + \nu_{x_{2,3}} \; \mu \right) + C^{k}_{2,2} \; \left(\lambda + \nu_{y_{2,3}} \; \mu \right) $$
$ i=3,\;j=1 $
$$ C^{k+1}_{4,1} \; \left(- \lambda + \nu_{x_{3,1}} \; \mu \right) + C^{k+1}_{3,2} \; \left(- \lambda + \nu_{y_{3,1}} \; \mu \right) + C^{k+1}_{3,1} \; \left(1 + 4 \; \lambda + \nu^{(1,0)}_{{x}_{3,1}} + \nu^{(0,1)}_{{y}_{3,1}}\right) + C^{k+1}_{2,1} \; \left(- \lambda - \nu_{x_{3,1}} \; \mu \right) + C^{k+1}_{3,0} \; \left(- \lambda - \nu_{y_{3,1}} \; \mu \right) \; = \\ \; C^{k}_{4,1} \; \left(\lambda - \nu_{x_{3,1}} \; \mu \right) + C^{k}_{3,2} \; \left(\lambda - \nu_{y_{3,1}} \; \mu \right) + C^{k}_{3,1} \; \left(1 - 4 \; \lambda - \nu^{(1,0)}_{{x}_{3,1}} - \nu^{(0,1)}_{{y}_{3,1}}\right) + C^{k}_{2,1} \; \left(\lambda + \nu_{x_{3,1}} \; \mu \right) + C^{k}_{3,0} \; \left(\lambda + \nu_{y_{3,1}} \; \mu \right) $$
$ i=3,\;j=2 $
$$ C^{k+1}_{4,2} \; \left(- \lambda + \nu_{x_{3,2}} \; \mu \right) + C^{k+1}_{3,3} \; \left(- \lambda + \nu_{y_{3,2}} \; \mu \right) + C^{k+1}_{3,2} \; \left(1 + 4 \; \lambda + \nu^{(1,0)}_{{x}_{3,2}} + \nu^{(0,1)}_{{y}_{3,2}}\right) + C^{k+1}_{2,2} \; \left(- \lambda - \nu_{x_{3,2}} \; \mu \right) + C^{k+1}_{3,1} \; \left(- \lambda - \nu_{y_{3,2}} \; \mu \right) \; = \\ \; C^{k}_{4,2} \; \left(\lambda - \nu_{x_{3,2}} \; \mu \right) + C^{k}_{3,3} \; \left(\lambda - \nu_{y_{3,2}} \; \mu \right) + C^{k}_{3,2} \; \left(1 - 4 \; \lambda - \nu^{(1,0)}_{{x}_{3,2}} - \nu^{(0,1)}_{{y}_{3,2}}\right) + C^{k}_{2,2} \; \left(\lambda + \nu_{x_{3,2}} \; \mu \right) + C^{k}_{3,1} \; \left(\lambda + \nu_{y_{3,2}} \; \mu \right) $$
$ i=3,\;j=3 $
$$ C^{k+1}_{4,3} \; \left(- \lambda + \nu_{x_{3,3}} \; \mu \right) + C^{k+1}_{3,4} \; \left(- \lambda + \nu_{y_{3,3}} \; \mu \right) + C^{k+1}_{3,3} \; \left(1 + 4 \; \lambda + \nu^{(1,0)}_{{x}_{3,3}} + \nu^{(0,1)}_{{y}_{3,3}}\right) + C^{k+1}_{2,3} \; \left(- \lambda - \nu_{x_{3,3}} \; \mu \right) + C^{k+1}_{3,2} \; \left(- \lambda - \nu_{y_{3,3}} \; \mu \right) \; = \\ \; C^{k}_{4,3} \; \left(\lambda - \nu_{x_{3,3}} \; \mu \right) + C^{k}_{3,4} \; \left(\lambda - \nu_{y_{3,3}} \; \mu \right) + C^{k}_{3,3} \; \left(1 - 4 \; \lambda - \nu^{(1,0)}_{{x}_{3,3}} - \nu^{(0,1)}_{{y}_{3,3}}\right) + C^{k}_{2,3} \; \left(\lambda + \nu_{x_{3,3}} \; \mu \right) + C^{k}_{3,2} \; \left(\lambda + \nu_{y_{3,3}} \; \mu \right) $$
Our goal was to rewrite the ecuations system, in the form:
$$ \underline{\underline{A}} \; \underline{C^{k+1}} \; = \; \underline{\underline{B}} \; \underline{C^{k}} $$
So, in that moment, we could finally put all that in a matrix form, being all $\;C^{k+1}_{i,j}\;$ the unknowns, and $\;C^{k}_{i,j}\;$ and rest of the constants, the knowns, and making zero all terms that contained i=0 or i=4 or j=0 or j=4, that are our boundary conditions. Renamed $\;\alpha \; = \; 1 + 4 \; \lambda\;$, $\;\beta \; = \; 1 - 4 \; \lambda\;$ and $\;V_{i,j}\;=\;\nu^{(1,0)}_{{x}_{i,j}} + \nu^{(0,1)}_{{y}_{i,j}}$:
$$ \begin{bmatrix}
\begin{array}{ccc|ccc|ccc}
\alpha + \nu^{(1,0)}_{{x}_{1,1}} + \nu^{(0,1)}_{{y}_{1,1}} & - \lambda + \nu_{y_{1,1}} \; \mu & 0 & - \lambda + \nu_{x_{1,1}} \; \mu & 0 & 0 & 0 & 0 & 0\\
- \lambda - \nu_{y_{1,2}} \; \mu & \alpha + \nu^{(1,0)}_{{x}_{1,2}} + \nu^{(0,1)}_{{y}_{1,2}} & - \lambda + \nu_{y_{1,2}} \; \mu & 0 & - \lambda + \nu_{x_{1,2}} \; \mu & 0 & 0 & 0 & 0\\
0 & - \lambda - \nu_{y_{1,3}} \; \mu & \alpha + \nu^{(1,0)}_{{x}_{1,3}} + \nu^{(0,1)}_{{y}_{1,3}} & 0 & 0 & - \lambda + \nu_{x_{1,3}} \; \mu & 0 & 0 & 0\\
\hline\\
- \lambda - \nu_{x_{2,1}} \; \mu & 0 & 0 & \alpha + \nu^{(1,0)}_{{x}_{2,1}} + \nu^{(0,1)}_{{y}_{2,1}} & - \lambda + \nu_{y_{2,1}} \; \mu & 0 & - \lambda + \nu_{x_{2,1}} \; \mu & 0 & 0\\
0 & - \lambda - \nu_{x_{2,2}} \; \mu & 0 & - \lambda - \nu_{y_{2,2}} \; \mu & \alpha + \nu^{(1,0)}_{{x}_{2,2}} + \nu^{(0,1)}_{{y}_{2,2}} & - \lambda + \nu_{y_{2,2}} \; \mu & 0 & - \lambda + \nu_{x_{2,2}} \; \mu & 0\\
0 & 0 & - \lambda - \nu_{x_{2,3}} \; \mu & 0 & - \lambda - \nu_{y_{2,3}} \; \mu & \alpha + \nu^{(1,0)}_{{x}_{2,3}} + \nu^{(0,1)}_{{y}_{2,3}} & 0 & 0 & - \lambda + \nu_{x_{2,3}} \; \mu\\
\hline\\
0 & 0 & 0 & - \lambda - \nu_{x_{3,1}} \; \mu & 0 & 0 & \alpha + \nu^{(1,0)}_{{x}_{3,1}} + \nu^{(0,1)}_{{y}_{3,1}} & - \lambda + \nu_{y_{3,1}} \; \mu & 0\\
0 & 0 & 0 & 0 & - \lambda - \nu_{x_{3,2}} \; \mu & 0 & - \lambda - \nu_{y_{3,2}} \; \mu & \alpha + \nu^{(1,0)}_{{x}_{3,2}} + \nu^{(0,1)}_{{y}_{3,2}} & - \lambda + \nu_{y_{3,2}} \; \mu\\
0 & 0 & 0 & 0 & 0 & - \lambda - \nu_{x_{3,3}} \; \mu & 0 & - \lambda - \nu_{y_{3,3}} \; \mu & \alpha + \nu^{(1,0)}_{{x}_{3,3}} + \nu^{(0,1)}_{{y}_{3,3}}
\end{array}
\end{bmatrix}\begin{bmatrix}
C^{k+1}_{1,1}\\C^{k+1}_{1,2}\\C^{k+1}_{1,3}\\\hline\\C^{k+1}_{2,1}\\C^{k+1}_{2,2}\\C^{k+1}_{2,3}\\\hline\\C^{k+1}_{3,1}\\C^{k+1}_{3,2}\\C^{k+1}_{3,3}\end{bmatrix}=$$
$$\begin{bmatrix}
\begin{array}{ccc|ccc|ccc}
\beta - \nu^{(1,0)}_{{x}_{1,1}} - \nu^{(0,1)}_{{y}_{1,1}} & \lambda - \nu_{y_{1,1}} \; \mu & 0 & \lambda - \nu_{x_{1,1}} \; \mu & 0 & 0 & 0 & 0 & 0\\
\lambda + \nu_{y_{1,2}} \; \mu & \beta - \nu^{(1,0)}_{{x}_{1,2}} - \nu^{(0,1)}_{{y}_{1,2}} & \lambda - \nu_{y_{1,2}} \; \mu & 0 & \lambda - \nu_{x_{1,2}} \; \mu & 0 & 0 & 0 & 0\\
0 & \lambda + \nu_{y_{1,3}} \; \mu & \beta - \nu^{(1,0)}_{{x}_{1,3}} - \nu^{(0,1)}_{{y}_{1,3}} & 0 & 0 & \lambda - \nu_{x_{1,3}} \; \mu & 0 & 0 & 0\\
\hline\\
\lambda + \nu_{x_{2,1}} \; \mu & 0 & 0 & \beta - \nu^{(1,0)}_{{x}_{2,1}} - \nu^{(0,1)}_{{y}_{2,1}} & \lambda - \nu_{y_{2,1}} \; \mu & 0 & \lambda - \nu_{x_{2,1}} \; \mu & 0 & 0\\
0 & \lambda + \nu_{x_{2,2}} \; \mu & 0 & \lambda + \nu_{y_{2,2}} \; \mu & \beta - \nu^{(1,0)}_{{x}_{2,2}} - \nu^{(0,1)}_{{y}_{2,2}} & \lambda - \nu_{y_{2,2}} \; \mu & 0 & \lambda - \nu_{x_{2,2}} \; \mu & 0\\
0 & 0 & \lambda + \nu_{x_{2,3}} \; \mu & 0 & \lambda + \nu_{y_{2,3}} \; \mu & \beta - \nu^{(1,0)}_{{x}_{2,3}} - \nu^{(0,1)}_{{y}_{2,3}} & 0 & 0 & \lambda - \nu_{x_{2,3}} \; \mu\\
\hline\\
0 & 0 & 0 & \lambda + \nu_{x_{3,1}} \; \mu & 0 & 0 & \beta - \nu^{(1,0)}_{{x}_{3,1}} - \nu^{(0,1)}_{{y}_{3,1}} & \lambda - \nu_{y_{3,1}} \; \mu & 0\\
0 & 0 & 0 & 0 & \lambda + \nu_{x_{3,2}} \; \mu & 0 & \lambda + \nu_{y_{3,2}} \; \mu & \beta - \nu^{(1,0)}_{{x}_{3,2}} - \nu^{(0,1)}_{{y}_{3,2}} & \lambda - \nu_{y_{3,2}} \; \mu\\
0 & 0 & 0 & 0 & 0 & \lambda + \nu_{x_{3,3}} \; \mu & 0 & \lambda + \nu_{y_{3,3}} \; \mu & \beta -\nu^{(1,0)}_{{x}_{3,3}} - \nu^{(0,1)}_{{y}_{3,3}}
\end{array}
\end{bmatrix}\begin{bmatrix}
C^{k}_{1,1}\\C^{k}_{1,2}\\C^{k}_{1,3}\\\hline\\C^{k}_{2,1}\\C^{k}_{2,2}\\C^{k}_{2,3}\\\hline\\C^{k}_{3,1}\\C^{k}_{3,2}\\C^{k}_{3,3}\end{bmatrix}$$
3) Now, we wrote the matrixes in $\;n^2\;$ matrix blocks of $\;n\;$ x $\;n\;$ dimension, and the vectors in $\;n\;$ vector blocks of $\;n\;$ dimension:
$$ \underline{\underline{A}} \; = \begin{bmatrix}
\underline{\underline{A_{1,1}}} & \underline{\underline{A_{1,2}}} & \cdots & \underline{\underline{A_{1,n}}}\\
\underline{\underline{A_{2,1}}} & \underline{\underline{A_{2,2}}} & \cdots & \underline{\underline{A_{2,n}}}\\
\vdots & \vdots & \ddots & \vdots \\
\underline{\underline{A_{n,1}}} & \underline{\underline{A_{n,2}}} & \cdots & \underline{\underline{A_{n,n}}}\\
\end{bmatrix} \;\;\;\;
\underline{C^{k+1}} \; = \begin{bmatrix}
\underline{C^{k+1}_{1}} \\
\underline{C^{k+1}_{2}} \\
\vdots \\
\underline{C^{k+1}_{n}} \\
\end{bmatrix} \;\;\;\;
\underline{\underline{B}} \; = \begin{bmatrix}
\underline{\underline{B_{1,1}}} & \underline{\underline{B_{1,2}}} & \cdots & \underline{\underline{B_{1,n}}}\\
\underline{\underline{B_{2,1}}} & \underline{\underline{B_{2,2}}} & \cdots & \underline{\underline{B_{2,n}}}\\
\vdots & \vdots & \ddots & \vdots \\
\underline{\underline{B_{n,1}}} & \underline{\underline{B_{n,2}}} & \cdots & \underline{\underline{B_{n,n}}}\\
\end{bmatrix} \;\;\;\;
\underline{C^{k}} \; = \begin{bmatrix}
\underline{C^{k}_{1}} \\
\underline{C^{k}_{2}} \\
\vdots \\
\underline{C^{k}_{n}} \\
\end{bmatrix} $$
And finally, we realised the pattern it followed, and could generalized for a $\;n\;$ x $\;n\;$ space steps:
$$ \underline{\underline{A_{w,w}}} \; = \begin{bmatrix}
1 + 4 \; \lambda + \nu^{(1,0)}_{{x}_{w,1}} + \nu^{(0,1)}_{{y}_{w,1}} & - \lambda + \nu_{y_{w,1}} \; \mu & 0 & \cdots & 0\\
- \lambda - \nu_{y_{w,2}} \; \mu & 1 + 4 \; \lambda + \nu^{(1,0)}_{{x}_{w,2}} + \nu^{(0,1)}_{{y}_{w,2}} & - \lambda + \nu_{y_{w,2}} \; \mu & \cdots & 0\\
0 & - \lambda - \nu_{y_{w,3}} \; \mu & 1 + 4 \; \lambda + \nu^{(1,0)}_{{x}_{w,3}} + \nu^{(0,1)}_{{y}_{w,3}} & \cdots & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
0 & 0 & 0 & \cdots & 1 + 4 \; \lambda + \nu^{(1,0)}_{{x}_{w,n}} + \nu^{(0,1)}_{{y}_{w,n}}\\
\end{bmatrix} $$
$$ \underline{\underline{A_{w,w-1}}} \; = \begin{bmatrix}
- \lambda - \nu_{x_{w,1}} \; \mu & 0 & 0 & \cdots & 0\\
0 & - \lambda - \nu_{x_{w,2}} \; \mu & 0 & \cdots & 0\\
0 & 0 & - \lambda - \nu_{x_{w,3}} \; \mu & \cdots & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
0 & 0 & 0 & \cdots & - \lambda - \nu_{x_{w,n}} \; \mu \\
\end{bmatrix} $$
$$ \underline{\underline{A_{w-1,w}}} \; = \begin{bmatrix}
- \lambda + \nu_{x_{w-1,1}} \; \mu & 0 & 0 & \cdots & 0\\
0 & - \lambda + \nu_{x_{w-1,2}} \; \mu & 0 & \cdots & 0\\
0 & 0 & - \lambda + \nu_{x_{w-1,3}} \; \mu & \cdots & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
0 & 0 & 0 & \cdots & - \lambda + \nu_{x_{w-1,n}} \; \mu \\
\end{bmatrix} $$
4) The last step focuses on isolating the unknowns vector, by doing:
$$ \underline{C^{k+1}} \; = \; \underline{\underline{A^{-1}}} \; \underline{\underline{B}} \; \underline{C^{k}} \; = \; \underline{\underline{\mathcal{M}}} \; \underline{C^{k}}$$
Where $\;\underline{\underline{\mathcal{M}}} \; = \; \underline{\underline{A^{-1}}} \; \underline{\underline{B}}$
That is the last ecuation system must be solved each time iteration. Note that, for the first iteration $\;(k\;=\;0)$, we get $\;\underline{C^{1}}\;=\;\underline{\underline{\mathcal{M}}} \; \underline{C^{0}}\;$, and this $\;\underline{C^{0}}\;$ vector, is given with the initial conditions, in our case, a Gaussian Distribution, centered in the middle of the plate.