Team:Grenoble-EMSE-LSU/Project/Biology

From 2013.igem.org

(Difference between revisions)
Line 106: Line 106:
<h3>Cell Growth Recovery after Stopping Illumination</h3>
<h3>Cell Growth Recovery after Stopping Illumination</h3>
-
<p align="center"><img src="https://static.igem.org/mediawiki/2013/5/5d/Grenoble_courbe_drawing.png" alt="cell recovery" width="600px"><br><br></p>
+
<p>We showed that we could either increase or decrease the amount of living cells within our sample, by modulating the amount of light reaching the culture. Indeed, KR-expressing cells were shown to be able to divide in the dark whereas they were killed upon appropriate illumination. But can a culture, initially illuminated, recover and grow again ? In other words: what is the viability status of cells that survive oxidative stress ?<br><br>
-
<p>We showed that we could either increase or decrease the amount of living cells within our sample, by modulating the amount of light reaching the culture. KR-expressing cells were shown to be able to divide in the dark whereas they were killed upon appropriate illumination. But can the amount of living cells re increase after stopping illuminating the culture with light? In which shape are the cells that survive oxidative stress?<br><br>
+
To answer this question, we decided to perform a kinetic experiment, in which a square light function (120 min, P = 0.03 µW/cm2) was applied. Cells were inoculated at OD610 = 0.02 in 25 mL LB medium, supplemented with antibiotics and 0.05 mM IPTG. The first measurement was performed 30 min after IPTG induction.<br><br></p>
-
To answer the first question, we decided to perform another kinetic, in which a square light function (120 min, P = X W/cm2) was applied to the system. In this experiment, cells were inoculated at OD610 = 0.02 in 25 mL LB medium, supplemented with antibiotics and 0.05 mM IPTG. The first measurement was performed 30 min after induction.<br><br></p>
+
<h4>Results</h4>
<h4>Results</h4>
<p align="center"><img src="https://static.igem.org/mediawiki/2013/2/26/Grenoble_recovery_graph.png" alt="results" width="750px"></p>
<p align="center"><img src="https://static.igem.org/mediawiki/2013/2/26/Grenoble_recovery_graph.png" alt="results" width="750px"></p>
-
<p id="legend">Figure2.<br>OD610 <strong>A</strong> and Fluorescence <strong>B</strong> responses to the system to a 120 min constant light illumination (P = X W/cm2). The illuminated sample is represented in red, the dark sample in blue. Error bars represent the standard errors of duplicates.<br><br></p>
+
<p id="legend">Figure2.<br>OD610 <strong>A</strong> and Fluorescence <strong>B</strong> responses of a culture exposed to a 120 min constant light illumination (P = 0.03 µW/cm2). The illuminated sample is represented in red, the dark sample in blue. Error bars represent the standard errors of duplicates.<br><br></p>
-
<p>As mentioned before, photobleaching of KR is a good indicator of the cytotoxicity induced by this protein upon light stimulations. This phenomenon occurs right after the beginning of the illumination (t = 210 min), moment at which ROS start being produced and accumulating inside bacteria (figure 2.B). Fluorescence of the illuminated cell sample still increases during illumination, possibly because of KR still being produced by <em>E. coli</em>. This could be explained by progressive accumulation of the intracellular damages caused by oxidative stress during light illumination. 120 min of illumination seems enough for these damages to reach a threshold value, above which a significant decrease in the amount of living cells occurs, ultimately leading to stabilization of OD610 from 365 to 510 min (figure 2.A.). During this time, in absence of light stimulations, the cells that have survived oxidative stress divides. After 510 min of experiment, the number of living cells becomes high enough to trigger a significant increase in the amount of 610 nm light that is absorbed by the sample.<br><br>
+
<p>As mentioned before, photobleaching of KR is a good indicator of the cytotoxicity induced by this protein upon light stimulation. This phenomenon occurs right after the beginning of the illumination (t = 210 min), the moment at which ROS start being produced and accumulate inside bacteria (Fig 2.B). Fluorescence of the illuminated cell sample still increases during illumination, probably because KR is still being produced by <em>E. coli</em>. There is thus a progressive accumulation of intracellular damages caused by oxidative stress during light illumination. A duration of 120 min of illumination seems long enough for the cell population to accumulate sufficient ROS damage. Indeed, at this illumination threshold, a significant decrease in the amount of living cells is measurable, ultimately leading to the stabilization of the OD610 between 365 and 510 min (Fig 2.A). The cells that have survived the light-induced oxidative stress divide again after time point 510 min.<br><br>
-
Then, it seems possible to recover a growth phase that follows the same dynamic as the culture that was kept in the dark during the whole experiment (figure 1. A). This phenomenon was called “growth recovery”.</p>
+
Thus, it seems possible for an illuminated culture to recover a growth phase with comparable dynamics as for the culture that was kept in the dark (Fig 1.A).
<h3>Influence of Light Intensity</h3>
<h3>Influence of Light Intensity</h3>

Revision as of 00:36, 1 October 2013

Grenoble-EMSE-LSU, iGEM


Grenoble-EMSE-LSU, iGEM

Retrieved from "http://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Biology"