Team:Grenoble-EMSE-LSU/Project/Biology

From 2013.igem.org

(Difference between revisions)
Line 80: Line 80:
                                         <p>For characterizing the effects of KillerRed on <em>E. coli</em> viability in different light conditions, we decided to focus on 3 kinetic variables: KR fluorescence, OD610 and colony forming units.<br><br>
                                         <p>For characterizing the effects of KillerRed on <em>E. coli</em> viability in different light conditions, we decided to focus on 3 kinetic variables: KR fluorescence, OD610 and colony forming units.<br><br>
                                         First of all, KR fluorescence can be used as an indicator of the level of expression of the protein in our cell culture. Then, optical density (OD610) provides real-time information on the biomass of the system. However, it cannot be used to distinguish living and non-living cells. This is the reason why the number of colonies growing on agar plates was considered to be able to quantify live cells with an independent technique.<br><br>
                                         First of all, KR fluorescence can be used as an indicator of the level of expression of the protein in our cell culture. Then, optical density (OD610) provides real-time information on the biomass of the system. However, it cannot be used to distinguish living and non-living cells. This is the reason why the number of colonies growing on agar plates was considered to be able to quantify live cells with an independent technique.<br><br>
-
                                         Since the spectrophotometer available in the lab was not suitable for illuminating cell samples for extended periods of time, we decided to perform kinetics in 100 mL Erlenmeyer flasks, incubated at 37°C, 200 rpm. A LED light source, interfaced to a computer via a microcontroller, was placed into the incubator for illuminating cell samples. A customized software enabled us to tightly modulate the intensity of the light emitted by the source.<br><br>
+
                                         Since the spectrophotometer available in the lab was not suitable for illuminating cell samples for extended periods of time, we decided to perform kinetics in 100 mL Erlenmeyer flasks, incubated at 37°C, 200 rpm. A LED light source, interfaced to a computer via a microcontroller, was placed into the incubator for illuminating cell samples. A customized software enabled us to tightly modulate the intensity of the light emitted by the source.<br><br></p>
-
                                         During most of the kinetic experiments, 800 µL of medium were pipetted every 30-60 min. OD610 measurements were performed using a GENESYS 6 spectrophotometer (Thermo Scientific, Waltham, MA, USA) whereas fluorescence was measured with a Tristar LB941 microplate reader, equipped with a 540/630 nm filter set for excitation and emission. Bacterial cell plating on agar plates was also performed at each time point, using serial dilutions.<br><br></p>
+
                                         <p align="center"><img src="https://static.igem.org/mediawiki/2013/2/21/Grenoble_Incubateur_set_up.jpg" alt="" width="750px"></p>
 +
                                        <p id="legend">Figure <br>Overview on the experimental set up used for KillerRed characterization.<br><br></p>
 +
                                        <p>During most of the kinetic experiments, 800 µL of medium were pipetted every 30-60 min. OD610 measurements were performed using a GENESYS 6 spectrophotometer (Thermo Scientific, Waltham, MA, USA) whereas fluorescence was measured with a Tristar LB941 microplate reader, equipped with a 540/630 nm filter set for excitation and emission. Bacterial cell plating on agar plates was also performed at each time point, using serial dilutions.<br><br></p>
                                         <h4>Growth medium</h4>
                                         <h4>Growth medium</h4>
                                         <p>M9-glucose medium was privileged in our experiments. As a matter of fact, it displays very low auto fluorescence and contains a single carbon source - glucose – hence providing more repeatable results than Luria-Bertani (LB) medium. pRep4 and pQE30::KR are respectively kanamycin and ampicillin-resistant, and these antibiotics were used at 50 µg/µL and 200 µg/µL.<br><br></p>
                                         <p>M9-glucose medium was privileged in our experiments. As a matter of fact, it displays very low auto fluorescence and contains a single carbon source - glucose – hence providing more repeatable results than Luria-Bertani (LB) medium. pRep4 and pQE30::KR are respectively kanamycin and ampicillin-resistant, and these antibiotics were used at 50 µg/µL and 200 µg/µL.<br><br></p>

Revision as of 13:01, 2 October 2013

Grenoble-EMSE-LSU, iGEM


Grenoble-EMSE-LSU, iGEM

Retrieved from "http://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Biology"