Team:Grenoble-EMSE-LSU/Project/Modelling/Building

From 2013.igem.org

(Difference between revisions)
Line 226: Line 226:
<center style="font-size:150%;">
<center style="font-size:150%;">
$
$
-
\frac{dC}{dt}(t)=rC(t)-\int_{u=0}^t k'I(u)K(u)e^{\ln(l)(t-u)}du
+
\frac{dC}{dt}(t)=rC(t)-\int_{u=0}^t k'I(u)K(u)e^{-p(t-u)}du
$
$
</center>
</center>
 +
<p> $p$: the ability of the cell to repair in one minute, in $min^{-1}.</p>
<br>
<br>
Line 237: Line 238:
<p> Written in its discrete-time form, the evolution of $C$ was described by </p>
<p> Written in its discrete-time form, the evolution of $C$ was described by </p>
<center style="font-size:150%;">
<center style="font-size:150%;">
 +
$\tau$ the value of a step of time:
$
$
-
C(t+1)-C(t)=rC(t)-kI(t)K(t)
+
C(t+\tau)-C(t)=rC(t)-kI(t)K(t)
$
$
</center>
</center>
Line 246: Line 248:
\left\{
\left\{
   \begin{array}{l l}
   \begin{array}{l l}
-
     C(t+1)-C(t)=rC(t)-\mbox{tox}(t) \\
+
     C(t+\tau)-C(t)=rC(t)-\mbox{tox}(t) \\
-
     \mbox{tox}(t+1)=l.\mbox{tox}(t)+k'I(t)K(t)\\
+
     \mbox{tox}(t+\tau)=l.\mbox{tox}(t)+k'I(t)K(t)\\
   \end{array}
   \end{array}
\right.
\right.
Line 255: Line 257:
with $l\in[0,1]$
with $l\in[0,1]$
</center>
</center>
 +
<br>
 +
<p>
<p>
-
The variable 'tox' is representative of the amount of damages inflicted to bacteria, and so of their probability of dying. During a time step (for us, a minute), bacteria cures part of their injuries ($l<1$) and suffers new damages ($k'I(t)K(t)$). At first, few bacteria die : $\mbox{tox}(t)\cong k'I(t)K(t)$, then, 'tox' increases until it reach $\mbox{tox}(t)\cong\frac{k'}{1-l}I(t)K(t)$. $k'$ is the same in the continuous-time and the discrete-time forms, it will from now be named simply $k$. $p$ and $l$ are directly related : $p=-\ln(l)$.
+
The variable 'tox' is representative of the amount of damages inflicted to bacteria, and so of their probability of dying. During a time step (for us, a minute), bacteria cures part of their injuries ($l<1$) and suffers new damages ($k'I(t)K(t)$). At first, few bacteria die : $\mbox{tox}(t)\cong k'I(t)K(t)$, then, 'tox' increases until it reach $\mbox{tox}(t)\cong\frac{k'}{1-l}I(t)K(t)$. $k'$ is the same in the continuous-time and the discrete-time forms, it will from now be named simply $k$. $p$ and $l$ are directly related : $p=-\frac{\ln(l)}{\tau}$.
</p>
</p>
<br>
<br>
-
 
+
<p>We have our last variable:</p>
 +
<p> $l$: the rate of reparation of the bacteria by step of time. unit less</p>

Revision as of 03:19, 3 October 2013

Grenoble-EMSE-LSU, iGEM


Grenoble-EMSE-LSU, iGEM

Retrieved from "http://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Modelling/Building"