Team:NTNU-Trondheim/Model
From 2013.igem.org
Line 69: | Line 69: | ||
The Pm/Xyls promotor system is a positive regulator system where the regulator molcule, Xyls, is constitutivly produced. When Xyls binds to the inducer m-toluic acid this complex binds to the Pm promotor(see figure 1). Binding to the promotor facilitates binding of RNA polymerase (RNAp) making it active (RNApA). This starts production of mRNA in an elongation step. The mRNA will be translated into the recombinant protein, or in our case, RFP. Over time mRNA and RFP will be degraded to som extent.</p> <br><br> | The Pm/Xyls promotor system is a positive regulator system where the regulator molcule, Xyls, is constitutivly produced. When Xyls binds to the inducer m-toluic acid this complex binds to the Pm promotor(see figure 1). Binding to the promotor facilitates binding of RNA polymerase (RNAp) making it active (RNApA). This starts production of mRNA in an elongation step. The mRNA will be translated into the recombinant protein, or in our case, RFP. Over time mRNA and RFP will be degraded to som extent.</p> <br><br> | ||
- | <div class="col4" style="background-color:white;><a href="https://static.igem.org/mediawiki/2013/d/d1/Modelpic.jpg"> <img src="https://static.igem.org/mediawiki/2013/d/d1/Modelpic.jpg" width=" | + | <div class="col4" style="background-color:white;><a href="https://static.igem.org/mediawiki/2013/d/d1/Modelpic.jpg"> <img src="https://static.igem.org/mediawiki/2013/d/d1/Modelpic.jpg" width="500"> |
<p style="text-align:center; color:black; "> Figure: Overview of how the Pm/Xyls Promotor system funtions. Production of recombinant protein is dependent on access to the indicer m-toluic acid.</p> </div> | <p style="text-align:center; color:black; "> Figure: Overview of how the Pm/Xyls Promotor system funtions. Production of recombinant protein is dependent on access to the indicer m-toluic acid.</p> </div> | ||
<br> | <br> |
Revision as of 16:23, 3 October 2013
The Pm/Xyls promotor system is a positive regulator system where the regulator molcule, Xyls, is constitutivly produced. When Xyls binds to the inducer m-toluic acid this complex binds to the Pm promotor(see figure 1). Binding to the promotor facilitates binding of RNA polymerase (RNAp) making it active (RNApA). This starts production of mRNA in an elongation step. The mRNA will be translated into the recombinant protein, or in our case, RFP. Over time mRNA and RFP will be degraded to som extent.
Figure: Overview of how the Pm/Xyls Promotor system funtions. Production of recombinant protein is dependent on access to the indicer m-toluic acid.
The reaction equations in the Pm/Xyls promotor system are listed below. The degradation of mRNA and RFP will inhibit an exponential production of these and after time the levels of mRNA and RFP will stabilize around a steady state.
Figure:
Figure 2: Overview of parameters applied in the Cain program
Varies starter consentration of inducer (0, 0.06, 0.3, 0.6, 1.2 and 6 µM) gave the result as indicated in figure 3 and the table below.
Figure 3: Different consentrations of inducer (0 to 6 uM) was applyed in the deterministic simulations, yeilding different amounts of RFP.