Template:Team:Bonn:NetworkData

From 2013.igem.org

(Difference between revisions)
Line 102: Line 102:
content.titleLong = "Transcriptional regulation";  
content.titleLong = "Transcriptional regulation";  
content.summary= "Advantages and disadvantages of transcriptional regulation";  
content.summary= "Advantages and disadvantages of transcriptional regulation";  
-
content.text= "One important regulation point is the transcription of RNA to DNA. There are many different systems which can be used in order to activate or repress the transcription. The greatest advantage are the wide spread possibilities regulation tools. Some popular examples are the operon, zinc finger and TALE. But on the other hand, one important disadvantage is the long time between induction and effect.";
+
content.text= "One important regulation point is the transcription of RNA to DNA. There are many different systems which can be used in order to activate or repress the transcription. The greatest advantage are the wide spread possibilities regulation tools. Some popular examples are the operon, zinc finger and TALE. But on the other hand, one important disadvantage is the long time between induction and effect. <h2>References:</h2>see following articles <li><a onclick=showNode(71)>Operon-model</a></li><li><a onclick=showNode(72)>Zinc finger</a></li><li><a onclick=showNode(73)>TALE</a></li>";
content.type="Background";
content.type="Background";
break;
break;
Line 732: Line 732:
content.childs=[];
content.childs=[];
content.titleShort = "TALE";
content.titleShort = "TALE";
-
content.titleLong = "transcription activator-like effectors";
+
content.titleLong = "Transcription activator-like effectors";
content.summary= "TALEs enable an easy and modular assembly of proteins binding specific desired DNA sequences";
content.summary= "TALEs enable an easy and modular assembly of proteins binding specific desired DNA sequences";
content.text= "These proteins bind promoter sequences. Their DNA binding domain consists of several tandem repeats that are able to bind specific domains of the DNA. These tandem repeats can easily be engineered, so the user can define the domain to bind to. Very similar to the zinc finger they actually do not regulate transcription, but bind effector proteinswhich are able to activate transcription. The great advance, in comparison with the zinc finger domain, is itŽs easy way of engineering. Scientists can very specificly regulate transcription by the use of TALEs.</br></br><p> <a href='http://onlinelibrary.wiley.com/doi/10.1111/jipb.12091/abstract'> Site-Specific Gene Targeting Using Transcription Activator-Like Effector (TALE)-Based Nuclease in Brassica oleracea: Zijian Sun†,Nianzu Li†, Guodong Huang, Junqiang Xu, Yu Pan, Zhimin Wang, Qinglin Tang, Ming Song*, Xiaojia Wang> </a> </p>";
content.text= "These proteins bind promoter sequences. Their DNA binding domain consists of several tandem repeats that are able to bind specific domains of the DNA. These tandem repeats can easily be engineered, so the user can define the domain to bind to. Very similar to the zinc finger they actually do not regulate transcription, but bind effector proteinswhich are able to activate transcription. The great advance, in comparison with the zinc finger domain, is itŽs easy way of engineering. Scientists can very specificly regulate transcription by the use of TALEs.</br></br><p> <a href='http://onlinelibrary.wiley.com/doi/10.1111/jipb.12091/abstract'> Site-Specific Gene Targeting Using Transcription Activator-Like Effector (TALE)-Based Nuclease in Brassica oleracea: Zijian Sun†,Nianzu Li†, Guodong Huang, Junqiang Xu, Yu Pan, Zhimin Wang, Qinglin Tang, Ming Song*, Xiaojia Wang> </a> </p>";

Revision as of 01:08, 5 October 2013