Team:Grenoble-EMSE-LSU/Project/Instrumentation

From 2013.igem.org

(Difference between revisions)
Line 18: Line 18:
<li id="titre">
<li id="titre">
<h1>TalkE'coli - Our device</h1>
<h1>TalkE'coli - Our device</h1>
-
<div id="box" style="width: 700px; margin-left: 137px; padding: 5px; border: 3px solid #000; background-color: #fe2b33;">
 
-
<div id="template" style="text-align: center; font-weight: bold; font-size: large; color: #f6f6f6; padding: 5px;">
 
-
Rorri Stark is now editing the page, be careful !
 
-
</div>
 
-
<div id="instructions" style="text-align: center; font-weight: normal; font-size: small; color: #f6f6f6; padding: 5px;">
 
-
<strong>DO NOT EDIT THIS PAGE!!!</strong> </br>
 
-
</div>
 
-
</div>
 
                                             <h2 id="Overview">Overview of the device</h2>
                                             <h2 id="Overview">Overview of the device</h2>
      <p>Our project aims to <strong>control the concentration of living bacteria in a culture</strong>. To do so, we designed <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Biology">a genetic network allowing light controlled cell growth</a>. In addition, we built a device in order to send and receive light signals from the bacterial culture. We have thus to create <strong>a means of communication from cell to machine and from machine to cell</strong>. For cell to machine communication, we chose to measure <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Biology">the red fluorescence of KillerRed</a>. The first function of our device is to excite and measure fluorescence intensity thanks to a light source, excitation/emission optics and a photodiode. In this way, our bacteria will be able to talk to our device. For machine to cell communication, we will use red light to activate <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Biology/KR"> light-inducible promoter</a> that triggers KillerRed production and white light to generate ROS thanks to KillerRed phototoxic activity. In our system, the rate of KillerRed production and the number of living cells will be controlled by the intensity of the red and white light beams. Therefore, a second function of our device is to generate controlled light intensities at different wavelengths. In this way, our device will be able to talk to our bacteria.</br></br></p>
      <p>Our project aims to <strong>control the concentration of living bacteria in a culture</strong>. To do so, we designed <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Biology">a genetic network allowing light controlled cell growth</a>. In addition, we built a device in order to send and receive light signals from the bacterial culture. We have thus to create <strong>a means of communication from cell to machine and from machine to cell</strong>. For cell to machine communication, we chose to measure <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Biology">the red fluorescence of KillerRed</a>. The first function of our device is to excite and measure fluorescence intensity thanks to a light source, excitation/emission optics and a photodiode. In this way, our bacteria will be able to talk to our device. For machine to cell communication, we will use red light to activate <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Biology/KR"> light-inducible promoter</a> that triggers KillerRed production and white light to generate ROS thanks to KillerRed phototoxic activity. In our system, the rate of KillerRed production and the number of living cells will be controlled by the intensity of the red and white light beams. Therefore, a second function of our device is to generate controlled light intensities at different wavelengths. In this way, our device will be able to talk to our bacteria.</br></br></p>

Revision as of 02:20, 5 October 2013

Grenoble-EMSE-LSU, iGEM


Grenoble-EMSE-LSU, iGEM

Retrieved from "http://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Instrumentation"