Team:Grenoble-EMSE-LSU/Project/Instrumentation

From 2013.igem.org

(Difference between revisions)
 
Line 28: Line 28:
                                     <h2 id="Box">The Box</h2>
                                     <h2 id="Box">The Box</h2>
                                       <p align="center"><object width="480" height="360"><param name="movie" value="//www.youtube.com/v/OY0-y8JZme0?version=3&amp;hl=fr_FR"></param><param name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="//www.youtube.com/v/OY0-y8JZme0?version=3&amp;hl=fr_FR" type="application/x-shockwave-flash" width="480" height="360" allowscriptaccess="always" allowfullscreen="true"></embed></object></br></br></p>
                                       <p align="center"><object width="480" height="360"><param name="movie" value="//www.youtube.com/v/OY0-y8JZme0?version=3&amp;hl=fr_FR"></param><param name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="//www.youtube.com/v/OY0-y8JZme0?version=3&amp;hl=fr_FR" type="application/x-shockwave-flash" width="480" height="360" allowscriptaccess="always" allowfullscreen="true"></embed></object></br></br></p>
-
                                       <p>Our device is built in such a way that the user <strong>only</strong> needs to <strong>define the concentration of living cells</strong> he wants and put <strong>the Erlenmeyer with our engineered bacteria</strong>. From that moment on, the device works in <strong>standalone manner</strong>. It first measures <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Instrumentation/Fluo#Fluo">the initial red fluorescence</a> (<strong>the baseline</strong>). Then it induces the <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Biology#KR">KillerRed</a> protein using <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Biology/KR">the red-inducible promoter</a>. Every <strong>5 minutes</strong>, Talk’E.Coli measures <strong>the red fluorescence level</strong> of the culture. Then the light is switched on and the fluorescence is further recorded. This info is used to <strong>build <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Modelling/Building">a model</a> of cell growth and KillerRed response to illumination</strong>. The computer then calculates the <strong>time profile</strong> of the white light intensity used to <strong>stabilize</strong> the living cell concentration. <strong>The main asset</strong> of the device is that it recalculates the model <strong>during the run and thus adjusts the light intensity more precisely</strong>. Finally, when the living cell population is <strong>stabilized at 10% of its target value</strong>, the computer sends a signal to the user to tell him the success of the procedure.
+
                                       <p>Our device is built in such a way that the user <strong>only</strong> needs to <strong>define the concentration of living cells</strong> he wants and put <strong>the Erlenmeyer with our engineered bacteria</strong>. From that moment on, the device works in <strong>standalone manner</strong>. It first measures <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Instrumentation/Fluo#Fluo">the initial red fluorescence</a> (<strong>the baseline</strong>). Then it induces the <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Biology#KR">KillerRed</a> protein using <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Biology/KR">the red-inducible promoter</a>. Every <strong>5 minutes</strong>, TalkE'Coli measures <strong>the red fluorescence level</strong> of the culture. Then the light is switched on and the fluorescence is further recorded. This info is used to <strong>build <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Modelling/Building">a model</a> of cell growth and KillerRed response to illumination</strong>. The computer then calculates the <strong>time profile</strong> of the white light intensity used to <strong>stabilize</strong> the living cell concentration. <strong>The main asset</strong> of the device is that it recalculates the model <strong>during the run and thus adjusts the light intensity more precisely</strong>. Finally, when the living cell population is <strong>stabilized at 10% of its target value</strong>, the computer sends a signal to the user to tell him the success of the procedure.
</br></br></p>
</br></br></p>
<p>First, we will explain the choice of the different components, then the several experiments we did to find the most accurate parameters for each part of the device : <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Instrumentation/Fluo#Photodiode">the photodiode and Arduino</a>, <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Instrumentation/Fluo#Fluo">fluorescence measurement</a>, <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Instrumentation/Fluo#Electronic">the electronic circuit</a>, <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Instrumentation/Fluo#Servo">the servomotor</a>. All these elements were then integrated in <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Instrumentation/Fluo#Box">the box</a> that we designed and built.</p>
<p>First, we will explain the choice of the different components, then the several experiments we did to find the most accurate parameters for each part of the device : <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Instrumentation/Fluo#Photodiode">the photodiode and Arduino</a>, <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Instrumentation/Fluo#Fluo">fluorescence measurement</a>, <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Instrumentation/Fluo#Electronic">the electronic circuit</a>, <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Instrumentation/Fluo#Servo">the servomotor</a>. All these elements were then integrated in <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Instrumentation/Fluo#Box">the box</a> that we designed and built.</p>

Latest revision as of 02:44, 5 October 2013

Grenoble-EMSE-LSU, iGEM


Grenoble-EMSE-LSU, iGEM

Retrieved from "http://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Instrumentation"