Team:Grenoble-EMSE-LSU

From 2013.igem.org

(Difference between revisions)
 
(120 intermediate revisions not shown)
Line 16: Line 16:
<div class="back" id="home">
<div class="back" id="home">
-
+
 
 +
 
 +
<!----- Contenu ----->
 +
<ul class="texte">
<ul class="texte">
<li id="titre">
<li id="titre">
-
<h1>Light Automated Cell Control (Lac²)</h1>
+
                                <h1 id="talke">TALKE'coli</h1>
-
<p><strong>This year, the Grenoble-EMSE-LSU iGEM team has developed a bioelectronics device enabling a tight control of bacterial culture growth with light : Talk’E. Coli.</strong><br><br>
+
-
                                When it comes to speed of growth, bacteria could be considered as the fastest organism on Earth. They are indeed able to grow in a wide set of environments, with a doubling time that can be as short as 10 min in optimal conditions [1]. Even though bacterial growth obeys quite simple mathematical laws, the series of very well coordinated operation of processes involved in this phenomenon are far from being fully understood. Unraveling
+
-
these genotypic and phenotypic processes represents nowadays an important challenge in public health. Contextually, we have developed a biological system enabling to monitor and control cell growth with light. It could be of great interest for improving our understanding of bacterial functions, and particularly of the defense mechanisms involved in response to oxidative stress.<br><br>
+
-
                                Light allows for precise machine-to-cell and cell-to-machine communication in both time and space and was thus elected as an interface between a biological cell culture and our electronic device.<br>
+
-
                                <img src="https://static.igem.org/mediawiki/2013/9/9a/1ere_version_image.png" width="620px">
+
-
                                Our system involves Escherichia Coli (E. coli) bacteria, producing the photosensitizing protein KillerRed. Upon light irradiation, this fluorescent protein (580/630 nm) produces Reactive Oxygen Species (ROS) which irreversibly damage cell proteins, membranes and DNA, leading to cell death [2]. Bacterial growth is here followed by monitoring the KillerRed-expressing cell red fluorescence and can be controlled by modulating the amount of ROS produced inside the bacteria, using white light stimulations. Since the amount of ROS produced, and thus the cytotoxicity, is closely related to the concentration in intracellular KillerRed, a photosensitive system enabling to control this protein level inside the cell was also developed.<br><br>
+
-
                                The results given by the biological experiments has enabled us to build a mathematical model that can help predicting the amount of living cells within our culture and their growth rate, in a specific set of experimental conditions (light intensity, illumination time, concentration in intracellular KillerRed protein). This model was further implemented on a microcontroller, driving our electronic system Talk’E. Coli. This device, equipped with different light sources and a photodiode, can then be used for regulating cell population and growth to any arbitrary level within natural limits.
+
-
</p>
+
-
</li>
+
 +
 +
                                <p>Bacteria are among the fastest growing and most widespread organisms on Earth. They can thrive in nearly every environment or ecosystem, and some can double their population in only 10min <a href="#ref_home">[1]</a>. Even though bacterial growth follows quite simple mathematical laws, many parameters of this process are far from being fully understood. This makes bacterial growth hard to control in a laboratory. Thus unraveling these genotypic and phenotypic processes represents an important challenge in current public health issues. We have developed a biological system that will enable researchers to <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project">control live cell density</a> in a culture. Such a tool could be of great interest for improving our understanding of bacteria: characterizing oxidative stress defence and recovery, monitoring growth media component consumption rates, or just making sure the culture you left Friday evening in the lab is in the same state on Monday morning.<br><br></p>
 +
 +
<!----- Images miniatures ----->
 +
 +
<ul class="miniature">
 +
<li>
 +
<a href="/Team:Grenoble-EMSE-LSU/Project/Biology" title="Biology">
 +
<img src="https://static.igem.org/mediawiki/2013/1/18/Grenoble_Biology.jpg">
 +
<span>Biology</span>
 +
</a>
 +
</li>
 +
<li>
 +
<a href="/Team:Grenoble-EMSE-LSU/Project/Modelling" title="Modelling">
 +
<img src="https://static.igem.org/mediawiki/2013/2/2e/Grenoble_Mod%C3%A9lisation.jpg">
 +
<span>Modelling</span>
 +
</a>
 +
</li>
 +
<li>
 +
<a href="/Team:Grenoble-EMSE-LSU/Project/Validation" title="Validation">
 +
<img src="https://static.igem.org/mediawiki/2013/1/10/Grenoble_Validation.jpg">
 +
<span>Validation</span>
 +
</a>
 +
</li>
 +
<li>
 +
<a href="/Team:Grenoble-EMSE-LSU/Project/Instrumentation" title="Electronics">
 +
<img src="https://static.igem.org/mediawiki/2013/f/fb/Grenoble_Circuit_electronique.jpg">
 +
<span>Electronics</span>
 +
</a>
 +
</li>
 +
</ul>
 +
 +
<!-------------------->
 +
 +
                                <p>Light allows for precise machine-to-cell and cell-to-machine communication in both time and space and was thus elected to <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Instrumentation">interface a biological cell culture to our electronic device</a>.</p>
 +
 +
 +
<!---------- Image mappée ---------->
 +
 +
<!--<p align="center"><map name="overview" id="ov">
 +
<area shape="poly" coords="48,39,309,42,309,94,102,94,102,207,47,207" href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Controlling" alt=""/>
 +
<area shape="poly" coords="401,37,604,42,604,210,555,210,555,87,402,87" href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Controlling/Viability" alt=""/>
 +
<area shape="poly" coords="48,285,102,285,102,371,548,371,555,210,604,210,610,435,43,435" href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Monitoring" alt=""/>
 +
</map>-->
 +
 +
<p align="center"><img src="https://static.igem.org/mediawiki/2013/9/9a/1ere_version_image.png" usemap="#overview" alt="Project overview" width="600px" /></p>
 +
 +
<p id="legend"><strong><em>Overview on Light Automated Cell Control.</em></strong><br>
 +
<strong><em>Source:</em></strong> Carpentier <em>et al.</em>, Structural Basis for the Phototoxicity of the Fluorescent Protein KillerRed, <em>FEBS Letters</em>,2009.<br><br></p>
 +
 +
<!-------------------->
 +
                               
 +
                                <p>Our system utilizes <em>Escherichia coli (E. coli)</em> bacteria that produce the <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Biology#KillerRed">photosensitizing protein KillerRed</a>. When illuminated with light, the fluorescent protein KillerRed (580/630nm) produces Reactive Oxygen Species (ROS). These species irreversibly damage cell proteins, membranes, and DNA, ultimately leading to cell death <a href="#ref_home">[2]</a>. Bacterial growth is monitored by measuring the fluorescence of cells containing KillerRed, and population control can be achieved by modulating the amount of ROS produced inside the bacteria with light stimulation. Since the amount of ROS produced is closely related to the amount of intracellular KillerRed, a photosensitive system <a href="#ref_home">[3-4]</a> was developed to regulate the concentration of this protein.<br><br>
 +
                                We have built a mathematical model based on the results given by our biological experiments, that can help <a href="https://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Modelling/Building">predict the amount of living cells within our culture</a> and their growth rate in a specific set of experimental conditions. These conditions depend on: light intensity, illumination time, and concentration of intracellular KillerRed protein. The model was further implemented on a, Arduino microcontroller, which drives our electronic system TalkE'Coli. This device, equipped with a white light source, a set of filters and a photodiode, can then be used to regulate living cell population and growth to any arbitrary level within natural limits.<br><br>
 +
                                </p>
 +
                        </li>
 +
 +
                        <li>
 +
                                <h2><a href="/Team:Grenoble-EMSE-LSU/Human_Practice/Lyon">Meet Them All !!!</a></h2>
 +
                                <p align="center" id="big">Don't forget to check the mail in your welcome pack in Lyon ;)<br>
 +
                                The prize of the "most sociable team" might be for you !!<br><br></p>
 +
                                <p align="center"><a href="/Team:Grenoble-EMSE-LSU/Human_Practice/Lyon"><img src="https://static.igem.org/mediawiki/2013/e/e0/Grenoble_Meet_Them_All.jpg" alt="" width="35%">
 +
<img src="https://static.igem.org/mediawiki/2013/4/4c/Grenoble_HP_enveloppe.JPG" alt="" width="35%"></a></p>
 +
 +
                        </li>
 +
 +
                        <li>
 +
                                <h2 id="ref_home">References</h2>
 +
                                <p><strong>[1]</strong> L. Elsgaard and D. Prieur, Hydrothermal vents in Lake Tanganyika harbor spore-forming thermophiles with extremely rapid growth, <em>Journal of Great Lakes Research</em>, March 2011.<br>
 +
                                  <strong>[2]</strong> M.E. Bulina <em>et al.</em>, A genetically encoded photosensitizer, <em>Nature Biotechnology</em>, January 2006.<br>
 +
                                  <strong>[3]</strong> J.J. Tabor <em>et al.</em>, Multichromatic Control of Gene Expression in <em>Escherichia coli</em>, <em>Journal of Molecular Biology</em>, 2011.<br>
 +
                                  <strong>[4]</strong> K.E. McGinness <em>et al.</em>, Engineering Controllable Protein Degradation, <em>Molecular Cell</em>, June 2006.
 +
                                </p>
 +
</li>
         </ul>
         </ul>
-
       
+
 
 +
 
 +
<!----- Footer ----->
 +
<p align="center"><a href="/Team:Grenoble-EMSE-LSU/Team/Sponsors"><img src="https://static.igem.org/mediawiki/2013/3/39/Grenoble_Footer.png" alt="footer" height="350px"></a></p>
 +
 
 +
<!-- Adresse -->
 +
 
 +
 
 +
 
 +
 
 +
<!-- Sponsors -->
 +
<!--
         <ul class="footer">
         <ul class="footer">
                 <li class="l1">
                 <li class="l1">
Line 44: Line 123:
<a href="http://www.lametro.fr/89-communaute-communes-grenoble-instition.htm" target="_blank"><img src="http://www.lametro.fr/images/GBI_LAMETRO/logo.png" width="150px"></a>
<a href="http://www.lametro.fr/89-communaute-communes-grenoble-instition.htm" target="_blank"><img src="http://www.lametro.fr/images/GBI_LAMETRO/logo.png" width="150px"></a>
                         <a href="http://www.ixxi.fr/" target="_blank"><img src="https://static.igem.org/mediawiki/2013/thumb/0/06/Ixxi.png/800px-Ixxi.png" width="100px"></a>
                         <a href="http://www.ixxi.fr/" target="_blank"><img src="https://static.igem.org/mediawiki/2013/thumb/0/06/Ixxi.png/800px-Ixxi.png" width="100px"></a>
-
 
                 </li>
                 </li>
                 <li class="l3">
                 <li class="l3">
Line 58: Line 136:
                 </li>
                 </li>
</ul>
</ul>
-
      
+
     -->
     </div>
     </div>
</html>
</html>

Latest revision as of 03:42, 5 October 2013

Grenoble-EMSE-LSU, iGEM


Grenoble-EMSE-LSU, iGEM

footer

Retrieved from "http://2013.igem.org/Team:Grenoble-EMSE-LSU"