Team:Hong Kong CUHK/backgroundVS

From 2013.igem.org

(Difference between revisions)
Line 76: Line 76:
#containerX2{
#containerX2{
position:relative;
position:relative;
-
width:1210px;
+
width:1100px;
-
height:1500px;
+
height:1600px;
 +
z-index:1;
 +
background-color: #FFF;
 +
}
 +
#containerX4{
 +
position:relative;
 +
width:1025px;
 +
height:1600px;
z-index:1;
z-index:1;
background-color: #FFF;
background-color: #FFF;
Line 103: Line 110:
<div id="buttons">
<div id="buttons">
-
<div class="menubar" id="homeUP"><a href="https://2013.igem.org/Team:Hong_Kong_CUHK"><img src="https://static.igem.org/mediawiki/2013/e/ee/Bpurple_home.png" width="120" height="76"/></a></div>
+
<div class="menubar" id="homeUP"><a href="https://2013.igem.org/Team:Hong_Kong_CUHK"><img src="https://static.igem.org/mediawiki/2013/e/ee/Bpurple_home.png" width="110" height="71"/></a></div>
-
<div class="menubar" id="teamUP"><a href="https://2013.igem.org/Team:Hong_Kong_CUHK/team"><img src="https://static.igem.org/mediawiki/2013/d/d8/Bpurple_team.png" width="120" height="76" /></a></div>
+
<div class="menubar" id="teamUP"><a href="https://2013.igem.org/Team:Hong_Kong_CUHK/team"><img src="https://static.igem.org/mediawiki/2013/d/d8/Bpurple_team.png" width="110" height="71" /></a></div>
-
<div class="menubar" id="projectUP"><a href="https://2013.igem.org/Team:Hong_Kong_CUHK/project"><img src="https://static.igem.org/mediawiki/2013/2/2d/Bpurple_project.png" width="120" height="76"/></a></div>
+
<div class="menubar" id="projectUP"><a href="https://2013.igem.org/Team:Hong_Kong_CUHK/project"><img src="https://static.igem.org/mediawiki/2013/2/2d/Bpurple_project.png" width="110" height="71"/></a></div>
-
<div class="menubar" id="biobrickUP"><a href="https://2013.igem.org/Team:Hong_Kong_CUHK/biobrick"><img src="https://static.igem.org/mediawiki/2013/b/b6/Bpurple_biobrick.png" width="120" height="76"/></a></div>
+
<div class="menubar" id="biobrickUP"><a href="https://2013.igem.org/Team:Hong_Kong_CUHK/biobrick"><img src="https://static.igem.org/mediawiki/2013/b/b6/Bpurple_biobrick.png" width="110" height="71"/></a></div>
-
<div class="menubar" id="hpUP"><a href="https://2013.igem.org/Team:Hong_Kong_CUHK/humanpractice"><img src="https://static.igem.org/mediawiki/2013/9/95/Bpurple_human_practice.png" width="120" height="76"/></a></div>
+
<div class="menubar" id="hpUP"><a href="https://2013.igem.org/Team:Hong_Kong_CUHK/humanpractice"><img src="https://static.igem.org/mediawiki/2013/9/95/Bpurple_human_practice.png" width="110" height="71"/></a></div>
-
<div class="menubar" id="modelUP"><a href="https://2013.igem.org/Team:Hong_Kong_CUHK/modelling"><img src="https://static.igem.org/mediawiki/2013/3/3f/Bpurple_modelling.png" width="120" height="76"/></a></div>
+
<div class="menubar" id="modelUP"><a href="https://2013.igem.org/Team:Hong_Kong_CUHK/modelling"><img src="https://static.igem.org/mediawiki/2013/3/3f/Bpurple_modelling.png" width="110" height="71"/></a></div>
-
<div class="menubar" id="safetyUP"><a href="https://2013.igem.org/Team:Hong_Kong_CUHK/safety"><img src="https://static.igem.org/mediawiki/2013/1/1e/Bpurple_safety.png" width="120" height="76"/></a></div>
+
<div class="menubar" id="safetyUP"><a href="https://2013.igem.org/Team:Hong_Kong_CUHK/safety"><img src="https://static.igem.org/mediawiki/2013/1/1e/Bpurple_safety.png" width="110" height="71"/></a></div>
-
<div class="menubar" id="docUP"><a href="https://2013.igem.org/Team:Hong_Kong_CUHK/documentation"><img src="https://static.igem.org/mediawiki/2013/1/12/Bpurple_documentation.png" width="120" height="76"/></a></div>
+
<div class="menubar" id="docUP"><a href="https://2013.igem.org/Team:Hong_Kong_CUHK/documentation"><img src="https://static.igem.org/mediawiki/2013/1/12/Bpurple_documentation.png" width="110" height="71"/></a></div>
-
<div class="menubar" id="galleryUP"><a href="https://2013.igem.org/Team:Hong_Kong_CUHK/gallery"><img src="https://static.igem.org/mediawiki/2013/e/ed/Bpurple_gallery.png" width="120" height="76"/></a></div>
+
<div class="menubar" id="galleryUP"><a href="https://2013.igem.org/Team:Hong_Kong_CUHK/gallery"><img src="https://static.igem.org/mediawiki/2013/e/ed/Bpurple_gallery.png" width="110" height="71"/></a></div>
-
<div class="menubar" id="ackUP"><a href="https://2013.igem.org/Team:Hong_Kong_CUHK/acknowledgement"><img src="https://static.igem.org/mediawiki/2013/4/4b/Bpurple_ack.png" width="120" height="76"/></a></div>
+
<div class="menubar" id="ackUP"><a href="https://2013.igem.org/Team:Hong_Kong_CUHK/acknowledgement"><img src="https://static.igem.org/mediawiki/2013/4/4b/Bpurple_ack.png" width="110" height="71"/></a></div>
</div>
</div>
Line 125: Line 132:
<div id="middle">
<div id="middle">
<div id="containerX2" style="margin: 0px auto;">
<div id="containerX2" style="margin: 0px auto;">
 +
<div id="containerX4" style="margin: 0px auto;">
<div id="heading" style="margin: 0px auto;">
<div id="heading" style="margin: 0px auto;">
<h2>Voltage Switch</h2>
<h2>Voltage Switch</h2>
Line 134: Line 142:
       <p>The voltage-dependent ion channels family are a  group of ion channel proteins found to have permeability to ions dependent on  the voltage in the external environment. This family of ion channels are widely  found in neuronal cells, which transmit signal through electricity pulse. It  was found that inside the ion channels, there exist a few repeating  short peptides that are responsible for  voltage sensing and the open and close of the channel. Studies have shown that  this peptide can migrate across the membrane in responds to voltage, and  analysis of the peptide showed numerous positively charged arginine and  hydrophobic leucine. However, there were not much applications. In this project  we will introduce this voltage sensor peptide as our novel switch, thus achieve  high speed respond in bacteria either in form of biomolecular fluorescent  complementation, or increased reaction rate in the degradation pathway of  carcinogenic substance BaP.</p>
       <p>The voltage-dependent ion channels family are a  group of ion channel proteins found to have permeability to ions dependent on  the voltage in the external environment. This family of ion channels are widely  found in neuronal cells, which transmit signal through electricity pulse. It  was found that inside the ion channels, there exist a few repeating  short peptides that are responsible for  voltage sensing and the open and close of the channel. Studies have shown that  this peptide can migrate across the membrane in responds to voltage, and  analysis of the peptide showed numerous positively charged arginine and  hydrophobic leucine. However, there were not much applications. In this project  we will introduce this voltage sensor peptide as our novel switch, thus achieve  high speed respond in bacteria either in form of biomolecular fluorescent  complementation, or increased reaction rate in the degradation pathway of  carcinogenic substance BaP.</p>
       <h1>Project Description</h1>
       <h1>Project Description</h1>
-
       <h3>~Voltage Switch</h3>
+
       <h3>Voltage Switch</h3>
       <p>Having  inspired by the voltage sensor peptide, we decided to make use of it as our  novel voltage switch. </p>
       <p>Having  inspired by the voltage sensor peptide, we decided to make use of it as our  novel voltage switch. </p>
-
       <h3>~PDZ  Domain/Ligand</h3>
+
       <h3>PDZ  Domain/Ligand</h3>
       <p>We  made use of the PDZ domain and ligand found in <em>Mus musculus</em> as a pair of  dimers that link two voltage sensor peptide together. As demonstrated by the  SJTU iGEM team of 2012, the PDZ domain and ligand functioned and worked as a  membrane protein scaffolding part which links enzymes together through linkers.  Since both voltage sensor peptides are positively charged, without the help of  the PDZ domain and ligand, they would not bind together due to mutual  repulsion. With the PDZ domain and ligand, the 2 voltage sensor peptides would  dimerize, thus forming the complete voltage switch.</p>
       <p>We  made use of the PDZ domain and ligand found in <em>Mus musculus</em> as a pair of  dimers that link two voltage sensor peptide together. As demonstrated by the  SJTU iGEM team of 2012, the PDZ domain and ligand functioned and worked as a  membrane protein scaffolding part which links enzymes together through linkers.  Since both voltage sensor peptides are positively charged, without the help of  the PDZ domain and ligand, they would not bind together due to mutual  repulsion. With the PDZ domain and ligand, the 2 voltage sensor peptides would  dimerize, thus forming the complete voltage switch.</p>
-
       <h3>~Voltage  Sensor Peptide</h3>
+
       <h3>Voltage  Sensor Peptide</h3>
       <p>
       <p>
         Found in <em>Aeropyrum pernix</em>, the voltage sensor peptide  contains arginine residues along the peptide, which give the peptide a net  positive charge under phyiological pH. It also contains a lot of leucine and  other hydrophobic residues, which make it an excellent transmembrane domain.  The voltage sensor peptide itself is very short. We used a polyproline rigid  linker to elongate it so that the separation distance would be longer. In order  to link the part with the PDZ domain and ligand, and also the downstream  effectors, we added in a polyglycine linker in front and after the whole part.  The rotatable angles on glycine residues allow flexible movement of the whole  part.</p>
         Found in <em>Aeropyrum pernix</em>, the voltage sensor peptide  contains arginine residues along the peptide, which give the peptide a net  positive charge under phyiological pH. It also contains a lot of leucine and  other hydrophobic residues, which make it an excellent transmembrane domain.  The voltage sensor peptide itself is very short. We used a polyproline rigid  linker to elongate it so that the separation distance would be longer. In order  to link the part with the PDZ domain and ligand, and also the downstream  effectors, we added in a polyglycine linker in front and after the whole part.  The rotatable angles on glycine residues allow flexible movement of the whole  part.</p>
-
       <h3>~Effectors</h3>
+
       <h3>Effectors</h3>
       <p>We  made use of Biomolecular fluorescent complementation and 2 enzymes to  demonstrate how the voltage sensors worked.</p>
       <p>We  made use of Biomolecular fluorescent complementation and 2 enzymes to  demonstrate how the voltage sensors worked.</p>
       <p>Biomoleular  fluorescent complementation (BiFC)</p>
       <p>Biomoleular  fluorescent complementation (BiFC)</p>
       <p>BiFC  is a phenomenon found in fluorescent proteins that, if we cleaved the protein  at some specific sites in the loops, we can separate the protein into 2 parts,  the N-terminal and the C-terminal. These two parts are non-fluorescence, and  under normal physiological condition, they will not refold with the other parts  to give fluorescent. However, when there is protein-protein interactions in  which the interacting proteins are linking with the fragments, the interactions  can bring the two fragments together, where they refold and mature to give  fluorescent again. We make use of this feature to be our reporter. When the  switch is OFF, the fragments were far apart, so they don&rsquo;t fluoresce, but when  we turn ON the switch, it brings the fragments together, thus the fragments  refold to give fluoresence. One drawback of this system is that there were  still no reported reversible BiFC reaction, and so theoretically it can&rsquo;t be  switched off.</p>
       <p>BiFC  is a phenomenon found in fluorescent proteins that, if we cleaved the protein  at some specific sites in the loops, we can separate the protein into 2 parts,  the N-terminal and the C-terminal. These two parts are non-fluorescence, and  under normal physiological condition, they will not refold with the other parts  to give fluorescent. However, when there is protein-protein interactions in  which the interacting proteins are linking with the fragments, the interactions  can bring the two fragments together, where they refold and mature to give  fluorescent again. We make use of this feature to be our reporter. When the  switch is OFF, the fragments were far apart, so they don&rsquo;t fluoresce, but when  we turn ON the switch, it brings the fragments together, thus the fragments  refold to give fluoresence. One drawback of this system is that there were  still no reported reversible BiFC reaction, and so theoretically it can&rsquo;t be  switched off.</p>
-
       <h3>~BaP  Degradation</h3><p>
+
       <h3>BaP  Degradation</h3><p>
         Laccase and Dioxygenase are 2 enzymes found in different organisms, which can  participate in a pathway in which carcinogenic substances BaP is first degraded  into quinone, and then to some simple carboxylic acids that could either be  harmless or very little harmful. Normally, the enzymatic reaction rate in cells  won&rsquo;t be very high regardless of the enzyme activity, and this is because in  physiological conditions and most experimental setups, rate of diffusion of  substrates is the major limiting factor. We try to make use of our voltage  switch as a way to quickly alter the distance between enzymes to change the  substrate diffusion distance, thus the reaction rate can be controlled by  electricity.</p>
         Laccase and Dioxygenase are 2 enzymes found in different organisms, which can  participate in a pathway in which carcinogenic substances BaP is first degraded  into quinone, and then to some simple carboxylic acids that could either be  harmless or very little harmful. Normally, the enzymatic reaction rate in cells  won&rsquo;t be very high regardless of the enzyme activity, and this is because in  physiological conditions and most experimental setups, rate of diffusion of  substrates is the major limiting factor. We try to make use of our voltage  switch as a way to quickly alter the distance between enzymes to change the  substrate diffusion distance, thus the reaction rate can be controlled by  electricity.</p>
-
       <h3>~How It Works</h3>
+
       <h3>How It Works</h3>
       <p>The voltage switch is a novel protein switch that  responds to external voltage. The switch itself consist of the PDZ  Ligand-Voltage sensor peptide (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1092007">BBa_K1092007</a>) and  the PDZ Domain-Voltage sensor peptide (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1092008">BBa_K1092008</a>),  and can be linked to different effectors such as the Dioxygenase (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1092002">BBa_K1092002</a>) and  Laccase (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1092004">BBa_K1092004</a>), or  the RFP fragments (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1092105">BBa_K1092105</a> &amp; <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1092106">BBa_K1092106</a>).  Initially, the two proteins would express and localize onto the inner membrane  of the bacteria. The two peptides would then come together forming a dimer.  After that, due to the mutual repulsion of the positive charges in the two  voltage sensor peptide, the two voltage sensor peptide would separate (Fig. 1).  This separate the two effectors down below the two peptide, causing either a  long distance for the two effectors to interact, or a longer distance of diffusion  of substrates. This represent the OFF stage of the voltage switch, and it could  be enhanced by using negatively charged environment to further pull them apart.<br />
       <p>The voltage switch is a novel protein switch that  responds to external voltage. The switch itself consist of the PDZ  Ligand-Voltage sensor peptide (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1092007">BBa_K1092007</a>) and  the PDZ Domain-Voltage sensor peptide (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1092008">BBa_K1092008</a>),  and can be linked to different effectors such as the Dioxygenase (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1092002">BBa_K1092002</a>) and  Laccase (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1092004">BBa_K1092004</a>), or  the RFP fragments (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1092105">BBa_K1092105</a> &amp; <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1092106">BBa_K1092106</a>).  Initially, the two proteins would express and localize onto the inner membrane  of the bacteria. The two peptides would then come together forming a dimer.  After that, due to the mutual repulsion of the positive charges in the two  voltage sensor peptide, the two voltage sensor peptide would separate (Fig. 1).  This separate the two effectors down below the two peptide, causing either a  long distance for the two effectors to interact, or a longer distance of diffusion  of substrates. This represent the OFF stage of the voltage switch, and it could  be enhanced by using negatively charged environment to further pull them apart.<br />
         <br />
         <br />
Line 154: Line 162:
     </p2>
     </p2>
</div>     
</div>     
 +
</div>
</div>
</div>
</div>
</div>

Revision as of 09:02, 27 October 2013

iGEM CUHK