Team:Penn/MethylaseCharacterization
From 2013.igem.org
Line 63: | Line 63: | ||
</br> | </br> | ||
</br> | </br> | ||
- | + | MaGellin reported our TALE-M.SssI was detectably methylating DNA at both the target site and off-target site. We expected a certain degree of off target methylation simply because the TALEs could occupy all the binding sites on our low copy plasmid; the molar ratio is one of the problems in developing site-specific methylases that the inducible MaGellin system is designed to address. MaGellin is designed to screen multiple fusion protein constructs in a high-throughput manner, and a user would normally select only constructs that methylate in a highly site-specific manner. However, we were interested in using MaGellin to study the TALE-M.SssI further before going back to the drawing board to redesign the linker length, binding site, and other variables. | |
</br> | </br> | ||
</br> | </br> | ||
Line 70: | Line 70: | ||
Given the novel nature of our MaGellin assay, we wanted to see if a traditional, published methylation assay would be in agreement about the TALE-M.SssI result. </br> | Given the novel nature of our MaGellin assay, we wanted to see if a traditional, published methylation assay would be in agreement about the TALE-M.SssI result. </br> | ||
<div style="margin-left:auto;margin-right:auto;text-align:center"><figure><img border="0" src="https://static.igem.org/mediawiki/2013/thumb/9/95/FinalCOBRATaleInd.png/514px-FinalCOBRATaleInd.png" alt="Workflow" width="400px"><figcaption><i>Figure 3: COBRA on induced TALE-M.SssI. The plasmid was bisulfite treated and the target and off target sites were amplified with our standard bisulfite sequencing primers. The amplicons were digested with TaqαI, which only cuts methylated sites, and BamHI, which only cuts untreated DNA. In COBRA, as opposed to MaGellin, digestion means methylation, and no digestion means no methylation.</i></figcaption></figure></div> | <div style="margin-left:auto;margin-right:auto;text-align:center"><figure><img border="0" src="https://static.igem.org/mediawiki/2013/thumb/9/95/FinalCOBRATaleInd.png/514px-FinalCOBRATaleInd.png" alt="Workflow" width="400px"><figcaption><i>Figure 3: COBRA on induced TALE-M.SssI. The plasmid was bisulfite treated and the target and off target sites were amplified with our standard bisulfite sequencing primers. The amplicons were digested with TaqαI, which only cuts methylated sites, and BamHI, which only cuts untreated DNA. In COBRA, as opposed to MaGellin, digestion means methylation, and no digestion means no methylation.</i></figcaption></figure></div> | ||
- | |||
</br> | </br> | ||
</br> | </br> | ||
Line 77: | Line 76: | ||
</br> | </br> | ||
</br> | </br> | ||
- | <center><h4>Varied Induction Conditions | + | <center><h4>Varied Induction Conditions Suggests TALE-M.SssI is Prone to Off Target Activity</center></h4> |
</br> | </br> | ||
- | Given the quick turnaround and cost-effectiveness of the MaGellin assay, it was feasible to test our TALE-M.SssI construct at 20 different conditions to get a better idea of its | + | Given the quick turnaround and cost-effectiveness of the MaGellin assay, it was feasible to test our TALE-M.SssI construct at 20 different conditions to get a better idea of its <i>in vivo</i>. We hoped to find the optimal induction point for reducing off target methylation. This study would have cost us approximately $7,000 to do by bisulfite sequencing, based on the prices at our university core facility. MaGellin only required restriction enzymes and gel electrophoresis. |
</br | </br | ||
- | <div style="margin-left:auto;margin-right:auto;text-align:center"><figure><img border="0" src="https://static.igem.org/mediawiki/2013/thumb/8/8c/3dplot-Converted.png/723px-3dplot-Converted.png" alt="Workflow" width="600px"><figcaption><i>Figure 4: The TALE-M.SssI with and without the TALE binding site present was induced with 0, .1, 1, and 2 mM of IPTG for 0, 2, 6, and 24 hours to find optimal expression conditions. Representative bands’ intensities were quantified | + | <div style="margin-left:auto;margin-right:auto;text-align:center"><figure><img border="0" src="https://static.igem.org/mediawiki/2013/thumb/8/8c/3dplot-Converted.png/723px-3dplot-Converted.png" alt="Workflow" width="600px"><figcaption><i>Figure 4: The TALE-M.SssI with and without the TALE binding site present was induced with 0, .1, 1, and 2 mM of IPTG for 0, 2, 6, and 24 hours to find optimal expression conditions. Representative bands’ intensities were quantified and normalized by background intensity.</i></figcaption></figure></div> |
</br></br> | </br></br> | ||
- | + | <p> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
The software package calculated for us that the largest band we were seeing on the TALE gel was the result of simultaneous target site and off target site methylation while the second largest band was only off target site methylation. We used this information to formulate the Targeting Score to reflect increased site-specificity. We varied induction conditions, expecting one might be more optimal than our previous inductions. As desired, the negative control produced a baseline Targeting Score of almost exactly 1 (1.06). However, no induction condition increased Targeting Score, rather there was a steady decline (Figure 4). This indicated the TALE could be giving negative feedback to the site-specific methylation. | The software package calculated for us that the largest band we were seeing on the TALE gel was the result of simultaneous target site and off target site methylation while the second largest band was only off target site methylation. We used this information to formulate the Targeting Score to reflect increased site-specificity. We varied induction conditions, expecting one might be more optimal than our previous inductions. As desired, the negative control produced a baseline Targeting Score of almost exactly 1 (1.06). However, no induction condition increased Targeting Score, rather there was a steady decline (Figure 4). This indicated the TALE could be giving negative feedback to the site-specific methylation. | ||
</br></br> | </br></br> |
Revision as of 23:46, 28 October 2013
Methylase Characterization
Zinc Finger-M.SssI Fusion
The zinc finger is a small DNA binding domain, with limited sequence specificity. Previous studies showed it was prone to off-target methylation, which we verified. This was also validation that the MaGellin assay accurately reports the site-specificity of methylation, effectively demonstrating our assay does everything we need it to do. SHOW ZINC FINGER DATA Figure 1: The ZF-M.SssI was cloned into MaGellin with and without its binding site present. We ran the standard MaGellin assay on both plasmids, using methylation sensitive restriction enzymes to report the methylase activity. To be sure of the targeting specificity, we cloned the MaGellin plasmid with and without the zinc finger’s binding site present at the target cut site. This demonstrated how the presence of a zinc finger binding site shifts the methylation pattern (Figure 1).TALE-M.SssI Fusion
TALEs have a greater sequence specificity than zinc fingers, and are easier to customize and less expensive to construct. They have already been validated for use in genome engineering and are replacing zinc fingers for some applications. We followed the MaGellin protocol to clone a TALE-M.SssI fusion and induced its expression. We repeated this experiment numerous times and found the TALE-M.SssI was methylating at both sites, as reported by the MaGellin software.TALE-M.SssI actively methylates DNA as reported by our MaGellin Assay
MaGellin reported our TALE-M.SssI was detectably methylating DNA at both the target site and off-target site. We expected a certain degree of off target methylation simply because the TALEs could occupy all the binding sites on our low copy plasmid; the molar ratio is one of the problems in developing site-specific methylases that the inducible MaGellin system is designed to address. MaGellin is designed to screen multiple fusion protein constructs in a high-throughput manner, and a user would normally select only constructs that methylate in a highly site-specific manner. However, we were interested in using MaGellin to study the TALE-M.SssI further before going back to the drawing board to redesign the linker length, binding site, and other variables.
Validated COBRA is in agreement with our new MaGellin Assay
Varied Induction Conditions Suggests TALE-M.SssI is Prone to Off Target Activity
The software package calculated for us that the largest band we were seeing on the TALE gel was the result of simultaneous target site and off target site methylation while the second largest band was only off target site methylation. We used this information to formulate the Targeting Score to reflect increased site-specificity. We varied induction conditions, expecting one might be more optimal than our previous inductions. As desired, the negative control produced a baseline Targeting Score of almost exactly 1 (1.06). However, no induction condition increased Targeting Score, rather there was a steady decline (Figure 4). This indicated the TALE could be giving negative feedback to the site-specific methylation.
Summary
MaGellin was developed to optimize the development of robust tools for site-specific methylation. To those ends, we successfully cloned and expressed three fusion methylases, two of which are novel constructs with advantages over the previously published zinc finger. Our constructs have shown methylase activity and DNA binding activity, which we could measure with our new assay. They are ready to be further optimized, using our workflow.To gain our new insight into a fundamental shortcoming of recently developed genome engineering tools, we used MaGellin to its full extent: swapping out DNA binding domains and binding sites, varying induction conditions, applying COBRA, bisulfite sequencing, and depending on our original algorithm to properly predict methylation-sensitive digestion patterns. Importantly, we could not have reached this result without MaGellin, because the one-plasmid system in a noiseless chassis makes it simple, even unavoidable, to detect off target methylation. Conversely, for the previously published work in mammalian systems, it was not feasible to detect off target effects across a long genome with background signal. Based on our data, future improvements on genome engineering tools should include the construction of two targeted fusions with subunits of effectors that only dimerize and show activity at the binding sites, along the lines of how TALE-Nucleases cleave DNA. That could be the best way to construct epigenetic engineering tools with the specificity necessary for clinical applications.
Moreover, we have demonstrated the importance of studying the distance between the binding site and the target site, and shown the ideal distance will be very different between different DNA binding domains. This boils down to an optimization problem between choosing binding sites and linker lengths; this is exactly the sort of problem that the MaGellin system is designed to solve in a fast and affordable manner.