Team:Alberta/Background

From 2013.igem.org

(Difference between revisions)
 
(62 intermediate revisions not shown)
Line 46: Line 46:
       z-index:2;
       z-index:2;
       background-color:#FFF;
       background-color:#FFF;
 +
    }
 +
    .content-title {
 +
      text-align:center;
 +
      font-size:3em;
     }
     }
     .titlebar h3, h4 {
     .titlebar h3, h4 {
Line 51: Line 55:
     }
     }
     .sidebar {
     .sidebar {
-
       position:fixed;
+
       position: fixed;
-
       top:190px;
+
       top: 157px;
-
       float:left;
+
       float: left;
-
       z-index:3;
+
       z-index: 3;
-
       padding: 0 0px 0px 40px;
+
       padding: 10px 10px 10px 10px;
 +
      width: 230px;
 +
    }
 +
    .sidebar_block {
 +
      background-color:white;
 +
      margin:1px;
 +
      border:1px grey solid;
 +
      padding:5px 10px 5px 10px;
 +
      border-radius:5px;
 +
      box-shadow: 0px 0px 20px #444444;
     }
     }
     .main {
     .main {
Line 65: Line 78:
       clear:both;
       clear:both;
     }
     }
-
  .ualberta-logo {
+
    .ualberta-logo {
       position:fixed;
       position:fixed;
       margin-left:70px;
       margin-left:70px;
-
       margin-top:-60px;
+
       margin-top:-70px;
       width:180px;
       width:180px;
     }
     }
Line 74: Line 87:
       position:fixed;
       position:fixed;
       margin-left:650px;
       margin-left:650px;
-
       margin-top:-90px;
+
       margin-top:-95px;
       width: 150px;
       width: 150px;
 +
    }
 +
    .igem-logo img {
 +
      width:210px;
     }
     }
     .igem-bar {
     .igem-bar {
Line 367: Line 383:
       box-shadow: 0px 0px 30px #000;
       box-shadow: 0px 0px 30px #000;
        
        
 +
    }
 +
    .section {
 +
      margin-top:200px;
 +
      padding-top:200px;
 +
    }
 +
    a.anchor{
 +
      display: block;
 +
      position: relative;
 +
      top: -180px;
 +
      visibility: hidden;
     }
     }
   </style>
   </style>
Line 372: Line 398:
   <body>
   <body>
     <div class="titlebar">
     <div class="titlebar">
-
      <h3>The Littlest Mapmaker</h3>
+
<br>
-
      <h4>"Exploration into the world of <a href="#">DNA Computing</a>"<br/>
+
<img src="/wiki/images/4/41/Ab_mapmen_title.png" width="600" height="95"></img><img src="/wiki/images/a/a5/2013-igem-logo.png" width="198" height="95"></img>
-
        Team Alberta: University of Alberta</h4>
+
-
      <a href="http://www.ualberta.ca" class="ualberta-logo"><img src="/wiki/images/b/b3/Ualberta-logo.png" alt="University of Alberta"></img></a>
+
-
      <a href="https://2013.igem.org" class="igem-logo"><img src="/wiki/images/a/ad/IGem-logo.png" alt="iGem Main Page"></img></a>
+
     </div>
     </div>
     <div class="bin">
     <div class="bin">
Line 385: Line 408:
             <li><a href="/Team:Alberta/Background" class="active">Background</a></li>
             <li><a href="/Team:Alberta/Background" class="active">Background</a></li>
             <li><a href="/Team:Alberta/Overview">Overview</a></li>
             <li><a href="/Team:Alberta/Overview">Overview</a></li>
-
            <li><a href="/Team:Alberta/FutureDevelopment">Future Development</a></li>
 
-
          </ul>
 
-
        </li>
 
-
        <li><a id="notebook" href="#">Notebook</a>
 
-
          <ul>
 
             <li><a href="/Team:Alberta/Results">Results</a></li>
             <li><a href="/Team:Alberta/Results">Results</a></li>
             <li><a href="/Team:Alberta/Protocols">Protocols</a></li>
             <li><a href="/Team:Alberta/Protocols">Protocols</a></li>
-
             <li><a href="/Team:Alberta/Parts">BioBricks</a></li>
+
             <li><a href="/Team:Alberta/Parts">Submitted Parts</a></li>
 +
            <li><a href="/Team:Alberta/Accomplishments">Accomplishments</a></li>
           </ul>
           </ul>
         </li>
         </li>
Line 399: Line 418:
             <li><a href="/Team:Alberta/Team">Roster</a></li>
             <li><a href="/Team:Alberta/Team">Roster</a></li>
             <li><a href="https://igem.org/Team.cgi?year=2013&team_name=Alberta">Official Profile</a></li>
             <li><a href="https://igem.org/Team.cgi?year=2013&team_name=Alberta">Official Profile</a></li>
-
             <li><a href="/Team:Alberta/Attributions">Sponsors</a></li>
+
             <li><a href="/Team:Alberta/Sponsors">Sponsors</a></li>
 +
            <li><a href="/Team:Alberta/Attributions">Attributions</a></li>
           </ul>
           </ul>
         </li>
         </li>
Line 408: Line 428:
           </ul>
           </ul>
         </li>
         </li>
-
         <li><a id="safety" href="#">Safety</a>
+
         <li><a href="/Team:Alberta/MainSafety">Safety</a>
           <ul>
           <ul>
             <li><a href="/Team:Alberta/SafetyForm">Safety Form</a></li>
             <li><a href="/Team:Alberta/SafetyForm">Safety Form</a></li>
Line 418: Line 438:
       </ul>
       </ul>
       <div class="sidebar">
       <div class="sidebar">
-
         <div href class="tooltip"><img src="/wiki/images/7/7d/SideChar.png"></img>  
+
         <div class="sidebar_block">
-
           <span class="saying">Welcome to the Team Alberta Wiki!
+
          <h5>Places</h5>
-
            <div id="box" style="width: 450px; padding: 5px; border: 3px solid #000; background-color: #000000;">
+
          <a href="#Top"><p>Top</p></a>
-
             <div id="template" style="text-align: center; font-weight: bold; font-size: large; color: #f6f6f6; padding: 5px;">
+
          <a href="#Travelling"><p>Travelling Salesman Problem</p></a>
-
              For visitors: this site is currently under construction. Please contact our Student Liason, Dawson at                  daocun@ualberta.ca, for more information on our current project and how to support us!
+
          <a href="#Real-World"><p>Real-World Issues</p></a>
-
             </div>
+
           <a href="#Computational"><p>The Computational Wall</p></a>
-
             </div>
+
          <a href="#Biocomputing"><p>Why Biocomputing?</p></a>
-
          </span>
+
          <a href="#Road"><p>A Long Road </p></a>
 +
          <h5>Project Sections</h5>
 +
             <a href="/Team:Alberta/Background" class="active"><p>Background</p></a>
 +
            <a href="/Team:Alberta/Overview"><p>Overview</p></a>
 +
            <a href="/Team:Alberta/Results"><p>Results</p></a>
 +
             <a href="/Team:Alberta/Protocols"><p>Protocols</p></a>
 +
             <a href="/Team:Alberta/Parts"><p>Submitted Parts</p></a>
 +
            <a href="/Team:Alberta/Accomplishments"><p>Accomplishments</p></a>
         </div>
         </div>
       </div>
       </div>
       <div class="main">
       <div class="main">
-
        <div class="block">
+
      <a class="anchor" id="Top"></a>
-
         <p>== '''Overall project''' ==</p>    
+
      <div class="block">
-
        <p>Tell us more about your project.  Give us background. 
+
         <p class="content-title">Background</p>
-
          Use this is the abstract of your project. 
+
      </div>
-
          Be descriptive but concise (1-2 paragraphs)</p>
+
      <a class="anchor" id="Travelling"></a>
-
        <p>== Project Details==</p>
+
      <div class="block">
-
        <p>=== Part 2 ===</p>
+
         <h2>The Travelling Salesman Problem</h2>
-
         <p>=== The Experiments ===</p>
+
         <p>MapMen is Team Alberta's endeavour to create a biological computer capable of solving
-
         <p>=== Part 3 ===</p>
+
          Travelling Salesman Problems (TSP), a general form of problem that asks:
-
         <p>== Results ==</p>
+
        <p class="centered-well">Given a set of cities, and a list of the distances between each pair of those cities,
-
        </div>
+
          what is the shortest possible route that travels to every city exactly once and then returns to the origin
-
        <div class="block">
+
          city?</p>
-
          <p>Lorem Ipsum is simply dummy text of the printing and typesetting industry.
+
         <p><center><img src="/wiki/images/6/6c/TSPexample.png" align="middle" style="width:33%;"></center></p>
-
            Lorem Ipsum has been the industry's standard dummy text ever since the 1500s,  
+
      </div>
-
            when an unknown printer took a galley of type and scrambled it to make a type
+
      <a class="anchor" id="Real-World"></a>
-
            specimen book. It has survived not only five centuries, but also the leap into
+
      <div class="block">
-
            electronic typesetting, remaining essentially unchanged.
+
        <h2>Real-World Issues</h2>
-
            It was popularised in the 1960s with the release of Letraset sheets containing
+
        <p>The TSP is named after the concept of a hypothetical salesman who is planning a route to visit his
-
            Lorem Ipsum passages, and more recently with desktop publishing software like
+
          customers in various neighbouring towns, but wants to maximize profits by using the shortest route — a 
-
            Aldus PageMaker including versions of Lorem Ipsum.
+
          helpful example to illustrate the usefulness of the problem: businesses around the world employ TSP-solving 
 +
          or related problem-solving software to help optimize their travelling needs, including in particular large 
 +
          courier companies that need to delivery millions of packages daily, and must reduce the expense of delivery 
 +
          vehicles and cut down travel time in any way possible, but also airliners, postal services, consumer GPS 
 +
          route-planning software, video-game pathfinding AI, and even electronics manufacture, in which a robot 
 +
          soldering arm must have an efficient path through the solder points to ensure maximum production over time.
           </p>
           </p>
-
         </div>
+
      </div>
 +
      <a class="anchor" id="Computational"></a>
 +
      <div class="block">
 +
         <h2>The Computational Wall</h2>
 +
        <p>The TSP is not only practically valuable, but also mathematically significant, because it belongs to a         
 +
          class of problems that are considered computationally difficult. The key difficulty with the TSP is due to         
 +
          the fact that it is an optimization problem: while for practical purposes any decent, short route is         
 +
          acceptable, a given TSP is nevertheless only considered "solved" when one verifies that one has obtained the         
 +
          shortest possible route. Mathematical verification of this sort requires what is called a "brute force"         
 +
          approach, in which one explores each and every possible route, tallying the total distance of each one, and         
 +
          then compares them all directly to guarantee the optimal route has been identified. As one increases the         
 +
          number of cities that must be included in the route, the time required for the brute-force approach becomes         
 +
          impossibly large.</p>
 +
        <img src="/wiki/images/9/9d/TSPcompWall.png" style="width:100%;"></img>
 +
      </div>
 +
      <a class="anchor" id="Biocomputing"></a>
 +
      <div class="block">
 +
        <h2>Why Biocomputing?</h2>
 +
        <p>Through synthetic biology, the creation of biological computers has opened a new avenue of possibility for
 +
          solving TSPs more rapidly: using DNA molecules and bacterial cells as processors, one can compute billions
 +
          of routes simultaneously, drastically reducing the time required through this massively parallel approach.
 +
          By employing far more processors than there are routes through a given network, the processing time can be
 +
          reduced to a standstill. A biological computer is also unique because it can solve problems stochastically:
 +
          while every possible route is explored by the computer, preferable routes (short ones) will predominate
 +
          among the generated products, allowing identification of the optimal route by population, rather than by a
 +
          slower, deterministic approach. </p>
 +
      </div>
 +
      <a class="anchor" id="Road"></a>
 +
      <div class="block">
 +
        <h2>A Long Road</h2>
 +
        <p>A number of previous attempts have been made to produce biocomputer solutions to the TSP, often involving pure DNA computing with no living organism present, including attempts by Leonard Adleman of RSA encryption fame, as well as previous efforts by the Davidson College/Missouri Western State University iGEM team, whose 2006 entry attempted to solve another challenging computational problem called the Burnt Pancake Problem, and in 2007 entered a DNA computing solution for the Hamiltonian Path Problem. Though related to the TSP, the Hamiltonian Path Problem attempts to discern if there is any possible route through a network, rather than picking the shortest possible one.</p>
 +
<img src="/wiki/images/d/d4/Hgp_vs_tsp.png" style="width:100%;"></img>
 +
<p>MapMen represents the latest in a line of attempts to refine the biological approach and create ever- increasingly powerful biological computers – and is the first of its kind to employ living cells to solve a travelling salesman problem. </p>
 +
      </div>
       </div>
       </div>
       <div class="clear"></div>
       <div class="clear"></div>

Latest revision as of 03:44, 29 October 2013


Background

The Travelling Salesman Problem

MapMen is Team Alberta's endeavour to create a biological computer capable of solving Travelling Salesman Problems (TSP), a general form of problem that asks:

Given a set of cities, and a list of the distances between each pair of those cities, what is the shortest possible route that travels to every city exactly once and then returns to the origin city?

Real-World Issues

The TSP is named after the concept of a hypothetical salesman who is planning a route to visit his customers in various neighbouring towns, but wants to maximize profits by using the shortest route — a helpful example to illustrate the usefulness of the problem: businesses around the world employ TSP-solving or related problem-solving software to help optimize their travelling needs, including in particular large courier companies that need to delivery millions of packages daily, and must reduce the expense of delivery vehicles and cut down travel time in any way possible, but also airliners, postal services, consumer GPS route-planning software, video-game pathfinding AI, and even electronics manufacture, in which a robot soldering arm must have an efficient path through the solder points to ensure maximum production over time.

The Computational Wall

The TSP is not only practically valuable, but also mathematically significant, because it belongs to a class of problems that are considered computationally difficult. The key difficulty with the TSP is due to the fact that it is an optimization problem: while for practical purposes any decent, short route is acceptable, a given TSP is nevertheless only considered "solved" when one verifies that one has obtained the shortest possible route. Mathematical verification of this sort requires what is called a "brute force" approach, in which one explores each and every possible route, tallying the total distance of each one, and then compares them all directly to guarantee the optimal route has been identified. As one increases the number of cities that must be included in the route, the time required for the brute-force approach becomes impossibly large.

Why Biocomputing?

Through synthetic biology, the creation of biological computers has opened a new avenue of possibility for solving TSPs more rapidly: using DNA molecules and bacterial cells as processors, one can compute billions of routes simultaneously, drastically reducing the time required through this massively parallel approach. By employing far more processors than there are routes through a given network, the processing time can be reduced to a standstill. A biological computer is also unique because it can solve problems stochastically: while every possible route is explored by the computer, preferable routes (short ones) will predominate among the generated products, allowing identification of the optimal route by population, rather than by a slower, deterministic approach.

A Long Road

A number of previous attempts have been made to produce biocomputer solutions to the TSP, often involving pure DNA computing with no living organism present, including attempts by Leonard Adleman of RSA encryption fame, as well as previous efforts by the Davidson College/Missouri Western State University iGEM team, whose 2006 entry attempted to solve another challenging computational problem called the Burnt Pancake Problem, and in 2007 entered a DNA computing solution for the Hamiltonian Path Problem. Though related to the TSP, the Hamiltonian Path Problem attempts to discern if there is any possible route through a network, rather than picking the shortest possible one.

MapMen represents the latest in a line of attempts to refine the biological approach and create ever- increasingly powerful biological computers – and is the first of its kind to employ living cells to solve a travelling salesman problem.