|
|
Line 26: |
Line 26: |
| | | |
| <h2>Conclusion</h2> | | <h2>Conclusion</h2> |
- |
| |
- | bla
| |
- |
| |
- | <h2>References</h2>
| |
| | | |
| bla | | bla |
Line 37: |
Line 33: |
| <p id="references">References:</p> | | <p id="references">References:</p> |
| <ol> | | <ol> |
- | <li><a href="https://2011.igem.org/Team:Imperial_College_London">https://2011.igem.org/Team:Imperial_College_London</a> </li> | + | <li>Computational Modeling and Simulation of the Human Duodenum - B. Hari, S. Bakalis, P. Fryer - 2012</li> |
- | <li>Cheng, Y. Dai, C. Zhao, Y. 2006. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in <i>Arabidopsis</i>. Genes & Dev 20: 1790-1799. Doi: 10.1101/gad.1415106 </li>
| + | </ol> |
- | <li>Paulsen, M., Legewie, S., Eils, R., Karaulanov, E. & Niehrs, C. 2011. Negative feedback in the bone morphogenetic protein 4 (BMP4) synexpression group governs its dynamic signaling range and canalizes development. PNAS 108, 10202-10207 (Supporting Information Appendixm ,SI Table 1. Kinetic parameters of the model).</li>
| + | |
- | <li>Urakami, M., Ano, R., Kimura, Y., Shima, M., Matsuno, R., Ueno, T. & Akamatsu, M. (2003). Relationship between structure and permeability of tryptophan derivatives across human intestinal epithelial (Caco-2) cells. Zeitschrift für Naturforschung C, Journal of biosciences 58c, 135-42.</li>
| + | |
- | <li>Brenda: The Comprehensive Enzyme Information System <a href="http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.13.12.3">http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.13.12.3</a> </li>
| + | |
- | <li><a href="http://biocyc.org/META/NEW-IMAGE?type=ENZYME&object=MONOMER-7661">http://biocyc.org/META/NEW-IMAGE?type=ENZYME&object=MONOMER-7661</a></li>
| + | |
- | <li><a href="https://2011.igem.org/Team:Imperial_College_London/Project_Auxin_Modelling">https://2011.igem.org/Team:Imperial_College_London/Project_Auxin_Modelling</a></li>
| + | |
- | <li>Boado, R. J., Li, J. Y., Nagaya, M., Zhang, C. & Pardridge, W. M. 1999. Selective expression of the large neutral amino acid transporter at the blood–brain barrier. PNAS 96, 12079-12084.</li>
| + | |
- | <li>Kim, D. K., Kanai, Y., Chairoungdua, A., Matsuo, H., Cha, S. H. & Endou, H. 2001. Expression Cloning of a Na+ -independent Aromatic Amino Acid Transporter with Structural Similarity to H+/Monocarboxylate Transporters. J Biol Chem 276, 17221-17228.</li>
| + | |
- | <li><a href="http://www.mathworks.fr/fr/help/simbio/ug/example--calculating-sensitivities.html">http://www.mathworks.fr/fr/help/simbio/ug/example--calculating-sensitivities.html</a></li> | + | |
- | <li>Schillers, H., Danker, T., Schnittler, H.-J., Lang, F. & Oberleithner, H. (2000). Plasma Membrane Plasticity of Xenopus laevis Oocyte Imaged with Atomic Force Microscopy. Cellular Physiol Biochem 10, 1-9.</li>
| + | |
- | </ol> | + | |
| </div> | | </div> |
| | | |
This model simulates the behaviour of a hemochromatosis suffering person's duodenum. We compute the quantity of iron absorbed by the organism.
Our genetically modified bacterias are also released in the duodenum and produce siderophores to chelate the solved iron, thus making it unavailable for intestinal absorption.