Team:KAIST Korea/Project

From 2013.igem.org

(Difference between revisions)
(Prototype team page)
(Overall project)
Line 35: Line 35:
== '''Overall project''' ==
== '''Overall project''' ==
-
Tell us more about your project.  Give us background.  Use this is the abstract of your project. Be descriptive but concise (1-2 paragraphs)
+
The widely used gene knock-out strategies are based upon a mere ‘on-off’ control and more complex regulation is impossible. On the other hand, knock-down strategies are more versatile in usage but the current techniques are vastly laborious for systematic control and pose difficulty in multiple targeting because of the intricate design and scar accumulation.
-
 
+
-
 
+
-
 
+
 +
iGEM KAIST 2013 seeks to take the yet-to-be-perfected genetic regulation technology to a new level: The RAPTOR (RNA Associated Prokaryotic Transcript Optimization with CRISPR) technology. RAPTOR uses CRISPR type III system for gene regulation. CRISPR type III targets and cleaves specific mRNA sequences through complementary binding of crRNA and nuclease activity of Cmr protein complex. RAPTOR exploits this nature of CRISPR for systematically down regulating the mRNA level of specific genes.
 +
Due to the characteristics of RAPTOR, one of the most useful applications of this technology can be biosynthesis pathway regulation. Programmed crRNA expression allows fine-tuning of target mRNA expression levels and can precisely regulate enzyme concentrations. Not only fine-tuning but multiplex engineering is also possible through simultaneous expression of different crRNAs. Thus, multiple enzymes can be targeted in pathway control.
 +
As a proof of concept we sought to regulate the lycopene pathway that is incorporated into the genome of Escherichia coli. The efflux of lycopene precursors is optimally reduced through lowering the mRNA levels of enzymes that synthesize non-lycopene end products. Through observation of increased lycopene yield in the E.coli, potentiality of RAPTOR technology can be validated.
== Project Details==
== Project Details==

Revision as of 14:51, 9 August 2013


This is a template page. READ THESE INSTRUCTIONS.
You are provided with this team page template with which to start the iGEM season. You may choose to personalize it to fit your team but keep the same "look." Or you may choose to take your team wiki to a different level and design your own wiki. You can find some examples HERE.
You MUST have all of the pages listed in the menu below with the names specified. PLEASE keep all of your pages within your teams namespace.


Home Team Official Team Profile Project Parts Submitted to the Registry Modeling Notebook Safety Attributions



Contents

Overall project

The widely used gene knock-out strategies are based upon a mere ‘on-off’ control and more complex regulation is impossible. On the other hand, knock-down strategies are more versatile in usage but the current techniques are vastly laborious for systematic control and pose difficulty in multiple targeting because of the intricate design and scar accumulation.

iGEM KAIST 2013 seeks to take the yet-to-be-perfected genetic regulation technology to a new level: The RAPTOR (RNA Associated Prokaryotic Transcript Optimization with CRISPR) technology. RAPTOR uses CRISPR type III system for gene regulation. CRISPR type III targets and cleaves specific mRNA sequences through complementary binding of crRNA and nuclease activity of Cmr protein complex. RAPTOR exploits this nature of CRISPR for systematically down regulating the mRNA level of specific genes.

Due to the characteristics of RAPTOR, one of the most useful applications of this technology can be biosynthesis pathway regulation. Programmed crRNA expression allows fine-tuning of target mRNA expression levels and can precisely regulate enzyme concentrations. Not only fine-tuning but multiplex engineering is also possible through simultaneous expression of different crRNAs. Thus, multiple enzymes can be targeted in pathway control.

As a proof of concept we sought to regulate the lycopene pathway that is incorporated into the genome of Escherichia coli. The efflux of lycopene precursors is optimally reduced through lowering the mRNA levels of enzymes that synthesize non-lycopene end products. Through observation of increased lycopene yield in the E.coli, potentiality of RAPTOR technology can be validated.

Project Details

Part 2

The Experiments

Part 3

Results