Team:Grenoble-EMSE-LSU/Project/Monitoring/Cell2Machine
From 2013.igem.org
Line 31: | Line 31: | ||
</p> | </p> | ||
- | <br> | + | <br> |
+ | <p> | ||
We use quite the same photodiode (TSL230RD) – same as the TSL230RP-LF but in surface mounted device (SMD) – and an Arduino Uno. Arduino is a single-board microcontroller created to make electronics more accessible. The main asset of the photodiode is that the output can be either a pulse train or a square wave (50% duty cycle) with frequency directly proportional to light intensity. Since we are using a microcontroller, it is easy to calculate a frequency with the digital input of the microchip thanks to high or low level and we will have a better resolution because low frequencies are easier to measure than low voltages. For the optic part we use a domestic LED lamp and a cube filter from a microscope with excitation and emission filters and an adjustable lens. A domestic LED lamp was chosen to allow us not to buy several high-power LEDS and built a card with a heat sink. This lamp illuminate with 520 lumens in a cone of 40° under 12V and 6W. The low voltage was chosen as a safety condition and the small angle to avoid losing to much light. The excitation filter is a green interferential filter to excite the red fluorescent protein and the emission filter is only a colored filter to have all the red light in order to have a more efficient measure. In the cube there is also a dichroic mirror that reflects all the green light and transmits all the red light. This mirror enables us to separate completely the photodiode from the light source. | We use quite the same photodiode (TSL230RD) – same as the TSL230RP-LF but in surface mounted device (SMD) – and an Arduino Uno. Arduino is a single-board microcontroller created to make electronics more accessible. The main asset of the photodiode is that the output can be either a pulse train or a square wave (50% duty cycle) with frequency directly proportional to light intensity. Since we are using a microcontroller, it is easy to calculate a frequency with the digital input of the microchip thanks to high or low level and we will have a better resolution because low frequencies are easier to measure than low voltages. For the optic part we use a domestic LED lamp and a cube filter from a microscope with excitation and emission filters and an adjustable lens. A domestic LED lamp was chosen to allow us not to buy several high-power LEDS and built a card with a heat sink. This lamp illuminate with 520 lumens in a cone of 40° under 12V and 6W. The low voltage was chosen as a safety condition and the small angle to avoid losing to much light. The excitation filter is a green interferential filter to excite the red fluorescent protein and the emission filter is only a colored filter to have all the red light in order to have a more efficient measure. In the cube there is also a dichroic mirror that reflects all the green light and transmits all the red light. This mirror enables us to separate completely the photodiode from the light source. | ||
</p> | </p> |
Revision as of 16:16, 29 August 2013