Team:Peking/Project/BioSensors/XylS

From 2013.igem.org

(Difference between revisions)
 
(295 intermediate revisions not shown)
Line 130: Line 130:
#navigationblock{background-color:#fafaf8; position:fixed; top:0px; width:1200px; height:130px; overflow:hidden; font-family:Calibri, Arial; float:left; margin:0px; padding:0px; z-index:1000; border-bottom:1px solid #d3d7d8;}
#navigationblock{background-color:#fafaf8; position:fixed; top:0px; width:1200px; height:130px; overflow:hidden; font-family:Calibri, Arial; float:left; margin:0px; padding:0px; z-index:1000; border-bottom:1px solid #d3d7d8;}
-
#navbarlogo{position:relative; top:8px; float:left; height:120px;}
+
#navbarlogo{position:absolute; top:0px; left:0px; width:1200px}
-
#navigationbar{position:absolute; left:500px; top:35px; font-size:18px; font-weight:100; color:black;}
+
#navigationbar{position:absolute; left:460px; top:38px; font-size:16px; font-weight:100; color:black;}
-
#navigationbar > li {display:block; list-style-type:none; float:left; width:85px; height:100px; text-align:center; background-color:transparent;}
+
#navigationbar > li {display:block; list-style-type:none; float:left; width:75px; height:30px; text-align:center; }
 +
.Navbar_Item{background-color:transparent;}
.Navbar_Item a {color:black; text-decoration:none;}
.Navbar_Item a {color:black; text-decoration:none;}
-
.Navbar_Item > ul {display:none; width:500px; height:80px; text-align:center; color:black;}
+
.Navbar_Item > ul {display:none; width:900px; height:80px; text-align:center; color:black; z-index:1100; }
-
.Navbar_Item > ul > li {float:left; list-style:none; width:100px; text-align:center; background-color:transparent; position:relative; top:10px;}
+
.Navbar_Item > ul > li {float:left; list-style:none; text-align:center; background-color:transparent; position:relative; top:10px; padding:0 10px;}
-
.Navbar_Item:hover{ border-bottom:1px solid #D00000; color:#D00000}
+
.Navbar_Item:hover{ border-bottom:1px solid #D00000; color:#D00000; background-color:#fafaf8;}
-
.Navbar_Item:hover > ul{ display:block;}
+
.Navbar_Item:hover > ul{zoom:1; display:block;}
-
.Navbar_Item:hover >a {color:#D00000}
+
.Navbar_Item:hover >a {color:#D00000; background-color:#fafaf8;}
-
.Navbar_Item > ul > li:hover {border-bottom:1px solid #D00000; color:#D00000}
+
.Navbar_Item > ul > li:hover {border-bottom:1px solid #D00000; color:#D00000; background-color:#fafaf8;}
.Navbar_Item > ul > li:hover >a {color:#D00000}
.Navbar_Item > ul > li:hover >a {color:#D00000}
 +
.BackgroundofSublist{position:absolute; left:-1000px; width:2000px; height:80px; background-color:#ffffff; opacity:0;}
#Home_Sublist{position:relative; top:0px; left:-50px;}
#Home_Sublist{position:relative; top:0px; left:-50px;}
-
#Team_Sublist{position:relative; top:0px; left:-60px;}
+
#Team_Sublist{position:relative; top:0px; left:-110px;}
-
#Project_Sublist{position:relative; top:0px; left:-200px;}
+
#Project_Sublist{position:relative; top:0px; left:-180px;}
#Model_Sublist{position:relative; top:0px; left:-140px;}
#Model_Sublist{position:relative; top:0px; left:-140px;}
 +
#DataPage_Sublist{position:relative; top:0px; left:-60px;}
#Safety_Sublist{position:relative; top:0px; left:-180px;}
#Safety_Sublist{position:relative; top:0px; left:-180px;}
-
#HumanPractice_Sublist{position:relative; top:0px; left:-220px;}
+
#HumanPractice_Sublist{position:relative; top:0px; left:-470px;}
-
#iGEM_logo{position:relative; top:8px; float:right; height:120px;}
+
#iGEM_logo{position:absolute; top:30px; left:1090px; height:80px;}
/*end navigation bar*/
/*end navigation bar*/
Line 157: Line 160:
#MajorBody{position:absolute; top:0px; left:0px; width:1200px; height:1019px;}
#MajorBody{position:absolute; top:0px; left:0px; width:1200px; height:1019px;}
#ProjectTitle{position:absolute; left:200px; background-color:#ea5930; width:1000px; height:210px; top:150px; z-index:600;}
#ProjectTitle{position:absolute; left:200px; background-color:#ea5930; width:1000px; height:210px; top:150px; z-index:600;}
-
#ProjectName{text-align:center; position:absolute; width:1000px; left:0px; top:40px; border-bottom:0px; color:#FFFFFF; font-size:45px; font-family:calibri,Arial, Helvetica, sans-serif;}
+
#ProjectName{text-align:center; position:absolute; width:1000px; left:0px; top:60px; border-bottom:0px; color:#FFFFFF; font-size:45px; font-family:calibri,Arial, Helvetica, sans-serif;}
#ProjectSubname{text-align:center; position:absolute; width:1000px; left:0px; top:130px; border-bottom:0px; color:#FFFFFF; font-size:19px;  font-family:calibri, Arial, Helvetica, sans-serif;}
#ProjectSubname{text-align:center; position:absolute; width:1000px; left:0px; top:130px; border-bottom:0px; color:#FFFFFF; font-size:19px;  font-family:calibri, Arial, Helvetica, sans-serif;}
-
#LeftNavigation{position:fixed; top:130px; float:left; width:200px; height:100%; background-color:#313131; z-index:900;}
+
#LeftNavigation{position:fixed; top:130px; float:left; width:200px; height:100%; background-color:#313131;z-index:1200;}
-
#SensorsListTitle{position:absolute; top:50px; left:30px; color:#ffffff; font-size:30px; font-family: calibri, arial, helvetica, sans-serif; text-decoration:none; border-bottom:0px;}
+
#SensorsListTitle{position:absolute; top:20px; left:20px; color:#ffffff; font-size:25px; font-family: calibri, arial, helvetica, sans-serif; text-decoration:none; border-bottom:0px;}
-
#SensorsListTitle a {color:#ffffff; text-decoration:none;}#SensorsList{position:absolute; top:110px; left:30px; color:#ffffff; font-family: calibri, arial, helvetica, sans-serif;}
+
#SensorsListTitle a {color:#ffffff; text-decoration:none;}
-
#SensorsList > li {display:block; list-style-type:none; width:100px; height:18px; font-size:18px; text-align:left; background-color:transparent;}
+
#SensorsList{position:absolute; top:70px; left:15px; color:#ffffff; font-family: calibri, arial, helvetica, sans-serif;}
-
#SensorsList a {color:#ffffff; text-decoration:none;}
+
#SensorsList > li {display:block; list-style-type:none; width:100px; height:13px; font-size:16px; text-align:left; background-color:transparent;}
-
 
+
.SensorsListItem>a {color:#ffffff; text-decoration:none;}
-
 
+
#SensorsListTitle:hover >a{color:#999999;}
-
#SensorEditingArea{position:absolute; left:200px; top:360px; height:6000px; width:1000px; background-color:#ffffff;}
+
.SensorsListItem:hover >a{color:#999999;}
-
 
+
 +
#SensorEditingArea{position:absolute; left:200px; top:360px; height:5300px; width:1000px; background-color:#ffffff; font-family:calibri,arial,helvetica,sans-serif;}
 +
#SensorEditingArea a{color:#ca4321; font-weight:bold;}
 +
code{font-family:calibri,arial,helvetica,sans-serif; font-size:18px; background-color:transparent;}
 +
code > sup{ font-size:10px;}
/*end of Major body*/
/*end of Major body*/
Line 178: Line 184:
#PageTitle{text-align:center; position:absolute; top:40px; left:0px; width:1000px; border-bottom:0px ; color:#535353; font-weight:bold ;font-size:35px;font-family:calibri,arial,helvetica,sans-serif;}
#PageTitle{text-align:center; position:absolute; top:40px; left:0px; width:1000px; border-bottom:0px ; color:#535353; font-weight:bold ;font-size:35px;font-family:calibri,arial,helvetica,sans-serif;}
-
#OverviewNahR1{text-align:center; position:absolute; top:100px ; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#ca4321; height:30px;width:120px }
+
#OverviewXylS1{text-align:center; position:absolute; top:100px ; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#ca4321; height:30px;width:150px }
-
#OverviewNahR2{text-align:center; position:absolute; top:3090px ; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#ca4321; height:30px;width:300px }
+
#OverviewXylS2{text-align:center; position:absolute; top:2770px ; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#ca4321; height:30px;width:300px }
-
#ContentNahR1{line-height:25px; text-align:justify; position:absolute; top:150px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
+
#ContentXylS1{line-height:25px; text-align:justify; position:absolute; top:150px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
-
#ContentNahR2{line-height:25px;text-align:justify; position:absolute; top:1000px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
+
#ContentXylS2{line-height:25px;text-align:justify; position:absolute; top:570px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
-
#ContentNahR3{line-height:25px;text-align:justify; position:absolute; top:1540px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
+
#ContentXylS3{line-height:25px;text-align:justify; position:absolute; top:1070px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
-
#ContentNahR4{line-height:25px;text-align:justify; position:absolute; top:1920px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
+
#ContentXylS4{line-height:25px;text-align:justify; position:absolute; top:1810px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
-
#ContentNahR5{line-height:25px;text-align:justify; position:absolute; top:2650px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
+
#ContentXylS5{line-height:25px;text-align:justify; position:absolute; top:2650px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
-
#ContentNahR6{line-height:25px;text-align:justify; position:absolute; top:3140px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
+
#ContentXylS6{line-height:25px;text-align:justify; position:absolute; top:2850px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
-
#ContentNahR7{line-height:25px;text-align:justify; position:absolute; top:3590px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
+
#ContentXylS7{line-height:25px;text-align:justify; position:absolute; top:3390px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
-
#ContentNahR8{line-height:25px;text-align:justify; position:absolute; top:4280px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
+
#ContentXylS8{line-height:25px;text-align:justify; position:absolute; top:3930px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
-
#ContentNahR9{line-height:25px;text-align:justify; position:absolute; top:4840px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
+
#ContentXylS9{line-height:25px;text-align:justify; position:absolute; top:4300px ; left:80px; width:840px; border-bottom:0px; color:#1b1b1b; font-size:18px;font-family:calibri,arial,helvetica,sans-serif;}
-
#FigureNahR1{line-height:20px; text-align:justify; position:absolute; top:750px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
+
#FigureXylS1{line-height:20px; text-align:justify; position:absolute; top:320px ; left:600px; width:320px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
-
#FigureNahR2{line-height:20px; text-align:justify; position:absolute; top:1450px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
+
#FigureXylS2{line-height:20px; text-align:justify; position:absolute; top:990px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
-
#FigureNahR3{line-height:20px; text-align:justify; position:absolute; top:1830px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
+
#FigureXylS3{line-height:20px; text-align:justify; position:absolute; top:1675px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
-
#FigureNahR4{line-height:20px; text-align:justify; position:absolute; top:2490px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
+
#FigureXylS4{line-height:20px; text-align:justify; position:absolute; top:3110px ; left:460px; width:460px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
-
#FigureNahR5{line-height:20px; text-align:justify; position:absolute; top:3520px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
+
#FigureXylS5{line-height:20px; text-align:justify; position:absolute; top:3820px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
-
#FigureNahR6{line-height:20px; text-align:justify; position:absolute; top:4170px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
+
#FigureXylS6{line-height:20px; text-align:justify; position:absolute; top:4080px ; left:480px; width:420px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
-
#FigureNahR7{line-height:20px; text-align:justify; position:absolute; top:4760px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
+
#FigureXylS7{line-height:20px; text-align:justify; position:absolute; top:4550px ; left:480px; width:420px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
-
#ReferenceNahR{line-height:20px; text-align:justify; position:absolute; top:5000px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
+
#ReferenceXylS{line-height:20px; text-align:justify; position:absolute; top:4800px ; left:100px; width:800px; border-bottom:0px; color:#1b1b1b; font-size:14px;font-family:arial,calibri,helvetica,sans-serif;}
-
#NahRFigure1{position:absolute; top:340px; left:225px; height:400px}}
+
#XylSFigure1{position:absolute; top:300px; left:80px; width:500px;}
 +
#XylSFigure2{position:absolute; top:830px; left:100px; width:800px;}
 +
#XylSFigure3{position:absolute; top:1200px; left:175px; width:650px;}
 +
#XylSFigure4{position:absolute; top:3110px; left:80px; width:360px}
 +
#XylSFigure5_1{position:absolute; top:3520px; left:80px; height:300px}
 +
#XylSFigure5_2{position:absolute; top:3520px; left:550px; height:280px}
 +
#XylSFigure6{position:absolute; top:4035px; left:80px; width:360px}
 +
#XylSFigure7{position:absolute; top:4490px; left:80px; width:400px}
 +
#XylSTableTitle{position:absolute;top:2370px; left:0px; width:1000px; text-align:center;font-size:17px;font-family:calibri,arial,helvetica,sans-serif; border-bottom:0px;}
 +
#XylSTable{position:absolute; top:2410px; left:80px; width:840px; font-size:18px;font-family:calibri,arial,helvetica,sans-serif; border-style: solid;}
</style>
</style>
-
 
<!--navigationbar-->
<!--navigationbar-->
Line 213: Line 227:
<div id="navigationblock">
<div id="navigationblock">
<img id="navbarlogo" src="https://static.igem.org/mediawiki/igem.org/c/c9/Peking_Logo.jpg"/>
<img id="navbarlogo" src="https://static.igem.org/mediawiki/igem.org/c/c9/Peking_Logo.jpg"/>
 +
       
<ul id="navigationbar">
<ul id="navigationbar">
<li id="PKU_navbar_Home" class="Navbar_Item">
<li id="PKU_navbar_Home" class="Navbar_Item">
-
<a href="https://2013.igem.org/Team:Peking">home</a>
+
                       
 +
<a href="https://2013.igem.org/Team:Peking">Home</a>
<ul id="Home_Sublist" >
<ul id="Home_Sublist" >
-
<li><a>Item1</a></li>
 
-
<li><a>Item2</a></li>
 
-
<li><a>Item3</a></li>
 
</ul>
</ul>
</li>
</li>
<li id="PKU_navbar_Team" class="Navbar_Item">
<li id="PKU_navbar_Team" class="Navbar_Item">
-
<a href="https://2013.igem.org/Team:Peking/Team">team</a>
+
<a href="">Team</a>
<ul id="Team_Sublist">
<ul id="Team_Sublist">
-
<li><a>Item1</a></li>
+
                                <div class="BackgroundofSublist"></div>
-
<li><a>Item2</a></li>
+
<li><a href="https://2013.igem.org/Team:Peking/Team/Members">Members</a></li>
-
<li><a>Item3</a></li>
+
<li><a href="https://2013.igem.org/Team:Peking/Team/Notebook">Notebook</a></li>
 +
<li><a href="https://2013.igem.org/Team:Peking/Team/Attributions">Attributions</a></li>
</ul>
</ul>
</li>
</li>
<li id="PKU_navbar_Project" class="Navbar_Item">
<li id="PKU_navbar_Project" class="Navbar_Item">
-
<a href="https://2013.igem.org/Team:Peking/Project">project</a>
+
<a href="https://2013.igem.org/Team:Peking/Project">Project</a>
<ul id="Project_Sublist">
<ul id="Project_Sublist">
-
<li><a href="https://2013.igem.org/Team:Peking/Project/BioSensors">Existing Biosensors</a></li>
+
                                <div class="BackgroundofSublist"></div>
-
<li><a>Plug-ins & Expansion</a></li>
+
                                <li><a href="https://2013.igem.org/Team:Peking/Project/SensorMining">Biosensor Mining</a></li>
-
<li><a>Band-pass Circuit</a></li>
+
<li><a href="https://2013.igem.org/Team:Peking/Project/BioSensors">Biosensors</a></li>
-
                                 <li><a>Application</a></li>
+
<li><a href="https://2013.igem.org/Team:Peking/Project/Plugins">Adaptors</a></li>
 +
<li><a href="https://2013.igem.org/Team:Peking/Project/BandpassFilter">Band-pass Filter</a></li>
 +
                                 <li><a href="https://2013.igem.org/Team:Peking/Project/Devices">Devices</a></li>
</ul>
</ul>
</li>
</li>
<li id="PKU_navbar_Model" class="Navbar_Item">
<li id="PKU_navbar_Model" class="Navbar_Item">
-
<a href="https://2013.igem.org/Team:Peking/Model">model</a>
+
<a href="">Model</a>
<ul id="Model_Sublist">
<ul id="Model_Sublist">
-
<li><a>Item1</a></li>
+
                                <div class="BackgroundofSublist"></div>
-
<li><a>Item2</a></li>
+
                                <li><a href="https://2013.igem.org/Team:Peking/Model">Band-pass Filter</a></li>
-
<li><a>Item3</a></li>
+
                                <li><a href="https://2013.igem.org/Team:Peking/ModelforFinetuning">Biosensor Fine-tuning</a></li>
 +
</ul>
 +
</li>
 +
                        <li id="PKU_navbar_HumanPractice" class="Navbar_Item" style="width:90px">
 +
<a href="">Data page</a>
 +
<ul id="DataPage_Sublist">
 +
                                <div class="BackgroundofSublist"></div>
 +
                                <li><a href="https://2013.igem.org/Team:Peking/DataPage/Parts">Parts</a></li>
 +
<li><a href="https://2013.igem.org/Team:Peking/DataPage/JudgingCriteria">Judging Criteria</a></li>
 +
 
</ul>
</ul>
</li>
</li>
<li id="PKU_navbar_Safety" class="Navbar_Item">
<li id="PKU_navbar_Safety" class="Navbar_Item">
-
<a href="https://2013.igem.org/Team:Peking/Safety">safety</a>
+
<a href="https://2013.igem.org/Team:Peking/Safety">Safety</a>
<ul id="Safety_Sublist">
<ul id="Safety_Sublist">
-
<li><a>Item1</a></li>
 
-
<li><a>Item2</a></li>
 
-
<li><a>Item3</a></li>
 
</ul>
</ul>
</li>
</li>
<li id="PKU_navbar_HumanPractice" class="Navbar_Item" style="width:120px">
<li id="PKU_navbar_HumanPractice" class="Navbar_Item" style="width:120px">
-
<a href="https://2013.igem.org/Team:Peking/HumanPractice">human practice</a>
+
<a href="https://2013.igem.org/Team:Peking/HumanPractice">Human Practice</a>
-
<ul id="HumanPractice_Sublist">
+
<ul id="HumanPractice_Sublist">
-
<li><a>Item1</a></li>
+
                                <div class="BackgroundofSublist"></div>
-
<li><a>Item2</a></li>
+
                                <li><a href="https://2013.igem.org/Team:Peking/HumanPractice/Questionnaire">Questionnaire Survey</a></li>
-
<li><a>Item3</a></li>
+
<li><a href="https://2013.igem.org/Team:Peking/HumanPractice/FactoryVisit">Visit and Interview</a></li>
 +
                                <li><a href="https://2013.igem.org/Team:Peking/HumanPractice/ModeliGEM">Practical Analysis</a></li>
 +
<li><a href="https://2013.igem.org/Team:Peking/HumanPractice/iGEMWorkshop">Team Communication</a></li>
 +
 
</ul>
</ul>
</li>
</li>
</ul>
</ul>
-
         <a href="https://igem.org/Team_Wikis?year=2013"><img id="iGEM_logo" src="https://static.igem.org/mediawiki/igem.org/4/48/Peking_igemlogo.jpg"/></a>
+
         <a href="https://2013.igem.org/Main_Page"><img id="iGEM_logo" src="https://static.igem.org/mediawiki/igem.org/4/48/Peking_igemlogo.jpg"/></a>
</div>
</div>
<!--end navigationbar-->
<!--end navigationbar-->
Line 273: Line 298:
<div id="ProjectTitle">
<div id="ProjectTitle">
<h1 id="ProjectName">Biosensors</h1>
<h1 id="ProjectName">Biosensors</h1>
-
                <h1 id="ProjectSubname">A FAST, EASY AND ACCURATE METHOD TO DETECT TOXIC AROMATIC COMPOUNDS</h1>
+
           
                 <img src="https://static.igem.org/mediawiki/igem.org/9/96/Peking2013-biosensortitile-zyh.jpg"/>
                 <img src="https://static.igem.org/mediawiki/igem.org/9/96/Peking2013-biosensortitile-zyh.jpg"/>
</div>
</div>
Line 280: Line 305:
                 <h1 id="SensorsListTitle"><a href="https://2013.igem.org/Team:Peking/Project/BioSensors">Biosensors</a></h1>
                 <h1 id="SensorsListTitle"><a href="https://2013.igem.org/Team:Peking/Project/BioSensors">Biosensors</a></h1>
                 <ul id="SensorsList">
                 <ul id="SensorsList">
-
                     <li><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/CapR">CapR</a><li>
+
                     <li class="SensorsListItem" style="font-size:18px; height:15px; width:180px; position:relative; left:-10px;">Individual Biosensors<li>
-
                     <li><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/DmpR">DmpR</a><li>
+
                    <li class="SensorsListItem"><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/XylS">XylS</a><li>
-
                     <li><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/HbpR">HbpR</a><li>
+
                     <li class="SensorsListItem"><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/XylR">XylR</a><li>
-
                     <li><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/HcaR">HcaR</a><li>
+
                     <li class="SensorsListItem"><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/HbpR">HbpR</a><li>
-
                     <li><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/HpaR">HpaR</a><li>
+
                     <li class="SensorsListItem"><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/HcaR">HcaR</a><li>
-
                     <li><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/NahR">NahR</a><li>
+
                     <li class="SensorsListItem"><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/HpaR">HpaR</a><li>
-
                     <li><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/PaaX">PaaX</a><li>
+
                     <li class="SensorsListItem"><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/HpaR#ContentHpaR4">PaaX</a><li>
-
                     <li><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/XylR">XylR</a><li>
+
                     <li class="SensorsListItem"><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/DmpR">DmpR</a><li>
-
                     <li><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/XylS">XylS</a><li>
+
                     <li class="SensorsListItem"><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/NahR">NahR</a><li>
 +
                   
 +
                     <li class="SensorsListItem" style="font-size:18px; height:40px; width:180px; position:relative; left:-10px; top:25px;"><a href="https://2013.igem.org/Team:Peking/Project/BioSensors/MulticomponentAnalysis">Multi-component Analysis</a></li>
                 </ul>
                 </ul>
          
          
Line 296: Line 323:
         <div >
         <div >
             <h1 id="PageTitle">XylS</h1>
             <h1 id="PageTitle">XylS</h1>
-
             <h2 id="OverviewNahR1"> Overview </h2>
+
             <h2 id="OverviewXylS1"> Mechanism </h2>
-
             <h3 id="OverviewNahR2"> Build Our Own Sensor! </h2>
+
             <h3 id="OverviewXylS2"> Build Our Own Sensor! </h2>
-
<img id="NahRFigure1" src="https://static.igem.org/mediawiki/igem.org/e/e2/Peking2013-NahRFigure1-zyh.jpg"/>
+
<img id="XylSFigure1" src="https://static.igem.org/mediawiki/igem.org/8/85/Peking2013_Xyls_figure1.png"/>
 +
<img id="XylSFigure2" src="https://static.igem.org/mediawiki/igem.org/6/66/Peking2013_Xyls_figure2.png"/>
 +
<img id="XylSFigure3" src="https://static.igem.org/mediawiki/igem.org/a/a3/Peking2013_Xyls_figure3.png"/>
 +
<img id="XylSFigure4" src="https://static.igem.org/mediawiki/2013/4/43/Peking2013_XylR_figure4.PNG"/>
 +
<img id="XylSFigure5_1" src="https://static.igem.org/mediawiki/igem.org/f/f4/Peking2013_Xyls_figure5.1.png"/>
 +
<img id="XylSFigure5_2" src="https://static.igem.org/mediawiki/igem.org/a/a4/Peking2013_Xyls_figure5.2.PNG"/>
 +
<img id="XylSFigure6"  src="https://static.igem.org/mediawiki/2013/5/5f/Peking2013_XylS_Figure6.PNG"/>
 +
<img id="XylSFigure7"  src="https://static.igem.org/mediawiki/2013/5/58/Peking2013_XylS_Figure7.PNG"/>
Line 305: Line 339:
-
<p id="ContentNahR1">
+
<p id="ContentXylS1">
-
XylS is an archetype transcriptional activator of AraC/XylS family, mined from the TOL plasmid pWW0 of the bacterium Pseudomonas putida. It is composed of a C-terminal domain (CTD) involved in DNA binding containing two helix-turn-helix motifs and an N-terminal domain required for effector binding and protein dimerization[5].<br/>XylS detect benzoate and its’ derivatives, mainly methyl and chlorine substitutes at 2-, 3- carbon[4] .
+
XylS is an archetype transcriptional activator of AraC/XylS family, mined from the TOL plasmid pWW0 of the bacterium <i>Pseudomonas putida</i>. It is composed of a C-terminal domain (CTD) involved in DNA binding, and an N-terminal domain required for effector binding and protein dimerization<a href="#FigureXylS7"><sup>[1]</sup></a>. XylS detect benzoate and its derivatives, mainly methyl and chlorine substitution at 2-, 3- carbon<a href="#FigureXylS7"><sup>[2]</sup></a>.
</p>
</p>
-
<p id="ContentNahR2">
+
<p id="ContentXylS2">
 +
 
 +
On TOL plasmid, the expression of XylS is initiated at two promoters: the strong promoter <i>Ps1</i> that is &sigma;<sup>54</sup>-dependent is positively regulated by XylR in the presence of toluene; <i>Ps2</i>, a &sigma;<sup>70</sup>-dependent promoter, is constitutive but weaker<a href="#FigureXylS7"><sup>[3]</sup></a>.
 +
<br/><br/>
 +
The cognate promoter regulated by XylS, <i>Pm</i>, is &sigma;<sup>54</sup>-dependent in <i>Pseudomonas putida</i>; meanwhile in <i>E.coli</i>, it is &sigma;<sup>70</sup>-dependent<a href="#FigureXylS7"><sup>[5]</sup></a>. It acts as the master regulator to control the ON/OFF expression of meta-operon on TOL plasmid pWW0<a href="#FigureXylS7"><sup>[6]</sup></a>. In this meta-operon, <I>xylXYZLTEGFJQKIH</I> genes encode enzymes for the degradation of benzoate and its derivatives, producing intermediate metabolites as carbon sources (<b>Fig.1</b>).
-
On TOL plasmid, the expression of XylS is initiated from two promoters. The strong promoter Ps1 which depends on factor is positively regulated by XylR at the presence of toluene. Ps2, which depends on factor, is constitutive but weak[7]. <br/>
 
-
The cognate promoter regulated by XylS, Pm, is 70-dependent in E.coli, while in Pseudomonas putida, it is 32/38-dependent[6]. It acts as the master regulator to control the ON/OFF expression of meta-operon on TOL plasmid pWW0[2]. In this meta-operon, XylXYZLTEGFJQKIH genes encode enzymes for the degradation of benzoate and its derivatives, generating intermediate products in TCA cycle. (Fig 1)
 
</p>
</p>
-
<p id="ContentNahR3">
+
<p id="ContentXylS3">
-
XylS recognizes two 15-bp direct repeats (TGCA-N6-GGNTA) on Pm promoter, each consisting of two half-sites: box A1/A2 (TGCA) and box B1/B2 (GGNTA). The arrangement of the two repeats is deposited like this so that the proximal XylS binding site overlaps the RNA polymerase -35 binding box by 2 bp[3]. (Fig 2)
+
XylS recognizes two 15-bp repeats (TGCA-N6-GGNTA) in <i>Pm</i> promoter, each featured by box A1/A2 (TGCA) and box B1/B2 (GGNTA), respectively. The arrangement of the two repeats is deposited as shown in <b>Figure 2</b>; the proximal XylS binding site overlaps the -35 box by 2 bp (the sequence for the binding of RNA polymerase)<a href="#FigureXylS7"><sup>[4]</sup></a>.
</p>
</p>
-
<p id="ContentNahR4">
+
<p id="ContentXylS4">
-
The process of Pm activation includes XylS-dependent DNA bending, XylS dimerization[3] and RNAP recruitment. Binding of effector molecule (e.g., benzoate anion) to XylS N-terminal domain causes the conformational change of C-terminal domain, which is released from inhibition[3], thus enabling XylS protein to bind Pm promoter on upstream activated sequence. The binding of XylS to DNA and accompanied DNA bending is a sequential process: A first XylS monomer binds to Pm at the proximal site with a bending angle to 50°. This DNA bending facilitates the binding of a second monomer at the distal site, increasing the DNA curvature up to 98°. This allows the formation of ready-to-use XylS dimer at Pm promoter. It is widely speculated that the XylS dimer recruits RNAP through contact with  subunit and -CTD (C-terminal domain of  subunit), thus to allow following open complex formation at -10 region and transcription is initiated[1].(Fig 3.)
+
<br/><br/>
 +
The process of <i>Pm</i> activation includes XylS-dependent DNA bending, XylS dimerization<a href="#FigureXylS7"><sup>[4]</sup></a> and RNA polymerase (RNAP) recruitment. Binding of effector molecule (e.g., benzoate anion) to XylS N-terminal domain causes the conformational change at the C-terminal domain, which enables XylS protein to bind to upstream activated sequence of <i>Pm</i> promoter. This allows the formation of ready-to-use XylS dimer at <i>Pm</i> promoter. See <b>Figure 3</b> for detailed explanation on the mechanism of transcription initiation by XylS.
 +
<br/><br/>
 +
 
 +
Since one of the criteria of our <a href="https://2013.igem.org/Team:Peking/Project/SensorMining">Sensor Mining</a> for aromatics-sensing transcriptional regulators is "well-studied", it can be expected that some mutants of XylS with novel aromatics-sensing characteristics have been identified in previous studies. As expected, according to the information we collected, there are three groups of XylS mutants. The first group, featured by thr45, includes a XylS mutant that exhibits broader aromatics-sensing profile than wild-type XylS, as well as higher level of transcription activation; this mutant are able to sense the ordinarily non-inducer 4-ethylbenzoate. The second group, featured by leu88 mutation, exhibits constitutive expression from the <i>Pm</i> promoter in the absence of inducers. The third group of mutants, including gly152, his41, val288, phe155, or arg256 mutations, recognizes new inducers, but generally with low induction fold.
 +
<br/><br/>
 +
 
 +
See <b>Table 1</b> for the comprehensive summary of XylS mutants and accompanied novel aromatics-sensing characteristics<a href="#FigureXylS7"><sup>[2]</sup></a>, which provides a rich repertoire for the synthetic biologists to customize the aromatics-sensing characteristics of XylS protein.  
 +
 
</p>
</p>
-
<p id="ContentNahR5">
+
<p id="ContentXylS5">
-
Various mutants of XylS are recognized, and they are divided into three groups. The first group, consisting of thr45, includes XylS mutant that exhibits broader detective range than XylS wild type as well as mediating high level reporter expression. This mutant recognizes the ordinary non-effectors salycilate and 4-ethylbenzoate. The second group, consisting of mutant leu88, exhibits constitutive expression from Pm promoter in the absence of inducers. The third group of mutants, including gly152, his41, val288, phe155, arg256, recognize new inducers, but differ from group one in that their induction ratio with new inducers are generally low, and the response to wild type inducers in some cases is reduced, even absent . For example, mutant gly152 is activated by new inducers 2-, 3- and 4-methoxybenzoate, but not by 2-fluorobenzoate and only weakly by methylbenzoates that are activators for wild type XylS. Mutant his41 is strongly activated by 5mM 3-methoxybenzoate, but it doesn't recognize the usual inducers 2- and 4-fluoro-3-iodo-, 3,4-dimethyl- and 3,4-dichlorobenzoate[4]. (Table 1)
+
 
</p>
</p>
-
<p id="ContentNahR6">
+
<p id="ContentXylS6">
-
We ligated BBa_J61051 which contains the constitutively expressed NahR and sal promoter with the reporter gene sfGFP (Fig. 5) via standard assembly. The plasmid verified by Beijing Genomics Institute was transformed into E. coli (TOP10, TransGen Biotech). Single clone of bacteria was picked and grown in rich LB medium added chloromycetin (170 μg/ml) overnight and stored at -80℃ in 20% glycerol, waiting for induction test.
+
Peking iGEM team has adopted thr45 XylS mutant (for the convenient of reading, referred to as “XylS" below) to build a biosensor due to its broader aromatics-sensing profile with high induction ratio. As discussed in <a href="https://2013.igem.org/Team:Peking/Project/BioSensors#BiosensorContent1">Biosensor Introduction</a>, we constructed a <i>Pm</i>/XylS biosensor circuit using eGFP as reporter gene. XylS is constitutively expressed under the control of a constitutive promoter (<i>Pc</i>), and the expression of eGFP is positively regulated by XylS in the presence of inducers. In this circuit, the strength of <i>Pc</i> promoter and RBS sequence preceding XylS and eGFP were manipulated, respectively, to fine-tune the performance.
-
</p>
+
-
<p id="ContentNahR7">
+
Through <a href="https://2013.igem.org/Team:Peking/Team/Notebook/Protocols">ON/OFF test</a> following <a href="https://2013.igem.org/Team:Peking/Team/Notebook/Protocols">Test Protocol 1</a>, we found the biosensor circuit adopting a weak constitutive promoter,  J23114, has the highest induction ratio when exposed to the inducers (<b>Fig.4</b>). 
 +
-
On-off test were first carried out for sensor strain NahR following test protocol 1 (hyperlink is needed). NahR strain with no inducer showed low basal expression of sfGFP and 18 compounds showed apparent activation effect with the induction ratios over 20 (Fig. 6). They are listed as follows: SaA, 2-ABzO, 3-MeSaA, 4-MeSaA, 4-ClSaA, 5-ClSaA, AsPR, 2,4,6-TClPhl, 3-IBzO, 2-MeBzO, 3-MeBzO, 4-FBzO, 3-ClBzO, 3-MeOBzO, 3-HSaA, 4-HSaA, 5-ClSaD, 4-ClBzO(For the full name, CHICK HERE).
 
-
Besides salicylate derivatives, our sensor strain specially responded to 2,4,6-TClPhl (a kind of polychlorinated phenol (short for PCP)), which is of significant hazard to water environment and human health.
 
</p>
</p>
-
<p id="ContentNahR8">
+
<p id="ContentXylS7">
-
One step further, NahR strain was subjected to induction experiments with concentration of inducer ranging from 0.03 μM to 1 or 3 mM. Dose-response curves of inducers listed above are obtained according to test protocol 1 (Fig. 7). Hundreds fold of induction can be reached at micro-molar concentration for SaA and its derivatives. Substituted benzoate also functions to activate NahR but with slightly lower induction ratio.
+
XylS biosensor treated with no inducer showed negligible basal expression of sfGFP. 20 compounds showed apparent activation effects with high induction ratios (higher than 20; <b>Fig.5</b>). They are BzO, 2-MeBzO, 3-MeBzO, 4-MeBzO, 2-FBzO, 4-FBzO, 2-ClBzO, 3-ClBzO, 4-ClBzO, 2-BrBzO, 4-BrBzO, 3-IBzO, 3-MeOBzO, SaA, 3-MeOSaA, 4-ClSaA, 5-ClSaA, 3-MeBAD, and 3-ClTOL (<a href="https://static.igem.org/mediawiki/igem.org/2/24/Peking2013_Chemicals_V3%2B.pdf">Click Here</a> for the full names of aromatic compounds).
-
        </p>
+
</p>
-
<p id="ContentNahR9">
+
<p id="ContentXylS8">
-
In summary, NahR strain works as a highly-sensitive and robust biosensor for salicylates, benzoate derivatives and water-hazard 2,4,6-TClPhl.
+
Moreover, we examined the dose-response curves of effective inducers for more details. Induction experiments using different sets of inducer concentrations (10 µM, 30µM, 100µM, 300µM and 1000µM) were performed following <a href="https://2013.igem.org/Team:Peking/Team/Notebook/Protocols">Test Protocol 1</a>. The results showed that the dose-response curves appeared like Hill functions (<b>Fig.6, Fig.7</b>).  
 +
        </p>
 +
 
 +
<p id="ContentXylS9">
 +
Checking the aromatics-sensing profile of XylS biosensor, we found that salicylic acid and its derivatives are also inducers of XylS which has <b>not been reported in previous studies</b>. The dose-response curves are illustrated in <b>Figure 7</b>.
 +
</br></br>
 +
These results altogether show that XylS biosensor has high induction ratio, low basal level and aromatics-specific sensing profile, which makes it to be a really high-performance component of our biosensor toolkit.
         </p>
         </p>
          
          
-
        <p id="FigureNahR1">
+
<p id="FigureXylS1">
 +
<B>Figure 1.</B> Regulatory circuits controlled by XylS and XylR on the TOL plasmid pWW0<a href="#FigureXylS7"><sup>[3]</sup></a>.
 +
Symbols used in this figure: Squares, XylS; circles, XylR; open symbols, transcriptional regulator without aromatic effector binding; closed symbols, effector-bound transcription factors that is in active form. See the main text for the detailed explanation for the regulatory loops<a href="#FigureXylS7"><sup>[4]</sup></a>.
-
 
-
<B>Fig. 1.</B> Degradation pathway of naphthalene in Pseudomonas putida and the gene cluster encoding this function. (a) Gene cluster on the NAH7 plasmid that degrades naphthalene: Naphthalene is transformed into salicylate under the enzymes encoded by the upper operon; salicylate is further degraded to enter TCA cycle via the gene products of the lower operon. Both of the operons are regulated by the transcription factor NahR in response to salicylate, the metabolic intermediate in the pathway. (b) Metabolism of naphthalene encoded by the NAH7 plasmid: Naphthalene is degraded by a series of 13 enzymatic reactions, each catalyzed by a specific nah gene product represented by a capital letter. A through M: A, Naphthalene dioxygenase; B, cis-dihydroxy-naphthalene dioxygenase; D, 2-hydroxychromene-2-carboxylate isomerase; E, 2-hydroxybenzalpyruvate aldolase; F, salicylaldehyde dehydrogenase; G, salicylate hydroxylase; H, catechol 2,3-dioxygenase; I, 2-hydroxymuconate semialdehyde dehydrogenase; J, 2-hydroxymuconate tautomerase; K, 4-oxalcrotonate decarboxylase; L, 2-oxo-4-pentenoate hydratase; M, 2-oxo-4-hydroxypentanoate aldolase.
 
</p>
</p>
-
<p id="FigureNahR2">
+
<p id="FigureXylS2">
-
 
+
<B>Figure 2. </B> Sequence features  of <i>Pm</i> promoter<a href="#FigureXylS7"><sup>[4]</sup></a>
-
Fig. 2. Location of the functional domains of NahR transcriptional factor. Domain marked by green near the N terminal accounts for DNA binding, which contains a typical helix-turn-helix motif; red domain functions to bind inducer, while the orange domain is putatively involved in multimerization of NahR in the activation.
+
The orange arrows indicate the two XylS binding sites (proximal and distal), each consisting of conserved A1/A2 and B1/B2 boxes. The -10 and -35 hexamers are in blue. A right-angled arrow indicates the transcription start site (+1).
</p>
</p>
-
<p id="FigureNahR3">
+
<p id="FigureXylS3">
-
Fig. 3. Schematic diagram of the consensus structure of the nahR-regulated promoter nah and sal. Alignment of sal and nah promoter is shown and the consensus forward sequences are marked in color. NahR binding sequence and RNAP binding sequence are shown in green and yellow respectively.
+
<B>Figure 3. </B> Mechanism of transcription activation by XylS at <i>Pm</i> promoter. Step 1: Free DNA. The -10/-35 consensus boxes of &sigma;<sup>70</sup>-dependent promoter and the two XylS binding sites (D: distal; and P: proximal) are highlighted. The bending angle is supposed to be 35°, centered at XylS proximal binding site. Step 2: A first XylS monomer is enabled to bind to <i>Pm</i> at the proximal site after binding with inducer at N terminal, shifting the bent center to the DNA sequence between the two XylS binding sites, increasing the bending angle to 50°. Step 3: This conformational change facilitates the binding of a second ready-to-use XylS monomer to the distal site, further increasing the DNA curvature to an overall value of 98°. Step 4: Contacts with RNAP, also probably with the σ-subunit, are established through the α-CTD of RNA polymerase, which dramatically facilitates the open complex formation and transcription initiation.
</p>
</p>
-
<p id="FigureNahR4">
+
<p id="FigureXylS4">
-
Fig. 4. Schematic diagram of the activation of sal (or nah) promoter via NahR in presence of inducer salicylate: 1. The DNA structure of sal promoter: A,B,C and D represent the binding sites for the putative tetramer of NahR; the yellow arrow shows the direction of sal promoter. 2. RNAP and σ70 bind to the sal promoter by recognizing -35 and -10 region; 3. Transcription factor NahR tightly binds to sal promoter and forms a tetramer no matter whether there is salicylate or not; 4. When salicylate is present, NahR•DNA complex undergoes a conformational change. After the hydrolysis of ATP, DNA is opened and transcription is activated.
+
<B>Figure 4.</B>Using a library of constitutive promoters (<i>Pc</i>) to fine-tune the induction ratio of XylS biosensor. Horizontal axis stands for different XylS biosensor circuits with different <i>Pc</i> promoters. These <i>Pc</i> promoters are of different strength to control the expression of XylS. The relative expression strength of these constitutive promoters, J23113, J23109, J23114, J23105, J23106 are 21, 106, 256, 623, and 1185, respectively, according to the <a href="http://parts.igem.org/Part:BBa_J23119">Partsregistry</a>. Four kinds of aromatic compounds, namely BzO, 2-MxeBzO, 3-MeBzO and 4-MeBzO, shown with different color intensities, were tested following <a href="https://2013.igem.org/Team:Peking/Team/Notebook/Protocols">Test Protocol 1</a>. Vertical axis represents the ON-OFF induction ratio. The <i>Pm</i>/XylS biosensor circuit adopting a weak <i>Pc</i> promoter J23114 performed best throughout the four inducers.  
</p>
</p>
-
<p id="FigureNahR5">
+
<p id="FigureXylS5">
-
Fig. 5. Schematic diagram of the plasmid built for sensor strain NahR. iGEM part BBa_J61051 was ligate with reporter sfGFP in the backbone pSB1C3. Promoters are in orange, RBS in light green, CDS in dark blue and terminators in red.
+
<B>Figure 5.</B> (<b>a</b>) The induction ratios of all 78 typical aromatic compounds in the <a href="https://2013.igem.org/Team:Peking/Team/Notebook/Protocols">ON/OFF test</a> following <a href="https://2013.igem.org/Team:Peking/Team/Notebook/Protocols">Test Protocol 1</a>. XylS biosensor could respond to 24 out of 78 aromatics with the induction ratio higher than 20, mainly benzoate, salicylic and their derivatives. (<b>b</b>) The aromatics-sensing profile of XylS biosensor is summarized from (<b>a</b>), highlighted in red in the aromatics spectrum. The structure formula of typical inducers are listed around the central spectrum, near their chemical formula.  
</p>
</p>
-
<p id="FigureNahR6">
+
<p id="FigureXylS6">
-
Fig. 6. Response of sensor strain NahR to various aromatics. (For the full name of the compounds, CLICK HERE(hyperlink is needed here)). (a) The induction ratio column in the On-Off test. NahR could respond to 18 out of 78 aromatics with the induction ratio over 20. (b) The detection range of sensor strain NahR is profiled in green at the aromatics spectrum. The structure formula of typical inducer is listed around the cycle spectrum, near its chemical formula.
+
<B>Figure 6.</B>Dose-response curves of XylS biosensor induced by benzoate and its derivatives. X-axis stands for concentration gradient of inducers at 10µM, 30µM, 100µM, 300µM and 1000µM. Different colors represent different kinds of inducers. Y-axis shows induction ratios. The induction ratio was calculated by dividing the fluorescence intensity of biosensor exposed to object inducers by the basal fluorescence intensity of the biosensor itself.
</p>
</p>
-
<p id="FigureNahR7">
+
<p id="FigureXylS7">
-
Fig. 7. Dose response curves of inducers of NahR. (a) Salicylate and its homologs and derivatives; (b) Benzoate, its derivatives and special inducers like 5-ClSaD and 2,4,6-TClPhl. For the full name of the compounds, CLICK HERE(hyperlink is needed here)).
+
<B>Figure 7.</B> Dose-response curves of XylS biosensor induced by salicylate and its derivatives. X-axis stands for concentration gradient of inducers at 10µM, 30µM, 100µM, 300µM and 1000µM. Y-axis denotes induction ratios. Different colors denote different kinds of inducers. The induction ratio was calculated by dividing the fluorescence intensity of biosensor exposed to object inducers by the basal fluorescence intensity of the biosensor itself.
</p>
</p>
        
        
-
<p id="ReferenceNahR">
+
<p id="ReferenceXylS">
-
<B>Reference:</B>
+
REFERENCES:<br/>
-
</br>
+
[1] Kaldalu, N., Toots, U., de Lorenzo, V., & Ustav, M. (2000). Functional domains of the TOL plasmid transcription factor XylS. Journal of bacteriology, 182(4), 1118-1126.<br/>
-
[1] Dunn, N. W., and I. C. Gunsalus.(1973) Transmissible plasmid encoding early enzymes of naphthalene oxidation in Pseudomonas putida. J. Bacteriol. 114:974-979
+
[2] Ramos, J. L., Michan, C., Rojo, F., Dwyer, D., & Timmis, K. (1990). Signal-regulator interactions, genetic analysis of the effector binding site of xyls, the benzoate-activated positive regulator of Pseudomonas TOL plasmid meta-cleavage pathway operon. Journal of molecular biology, 211(2), 373-382.<br/>
-
</br>
+
[3] Ramos, J. L., Marqués, S., & Timmis, K. N. (1997). Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Annual Reviews in Microbiology, 51(1), 341-373.<br/>
-
[2] M. A. Schell.(1983) Cloning and expression in Escherichia coli of the naphthalene degradation genes from plasmid NAH7. J. Bacteriol. 153(2):822
+
[4] Domínguez-Cuevas, P., Marín, P., Busby, S., Ramos, J. L., & Marqués, S. (2008). Roles of effectors in XylS-dependent transcription activation: intramolecular domain derepression and DNA binding. Journal of bacteriology, 190(9), 3118-3128.<br/>
-
</br>
+
[5] Gerischer, U. (2002). Specific and global regulation of genes associated with the degradation of aromatic compounds in bacteria. Journal of molecular microbiology and biotechnology, 4(2), 111-122.<br/>
-
[3] M. A. Schell, and P. E. Wender.(1986) Identification of the nahR gene product and nucleotide sequences required for its activation of the sal operon. J. Bacteriol. 116(1):9
+
[6] Kaldalu, N., Mandel, T., & Ustav, M. (1996). TOL plasmid transcription factor XylS binds specifically to the Pm operator sequence. Molecular microbiology,20(3), 569-579.<br/>
-
</br>
+
[7] Domínguez-Cuevas, P., Ramos, J. L., & Marqués, S. (2010). Sequential XylS-CTD binding to the Pm promoter induces DNA bending prior to activation. Journal of bacteriology, 192(11), 2682-2690. <br/>
-
[4] Woojun Park, Che Ok Jeon, Eugene L. Madsen.(2002) Interaction of NahR, a LysR-type transcriptional regulator, with the K subunit of RNA polymerase in the naphthalene degrading bacterium, Pseudomonas putida NCIB 9816-4. FEMS Microbiology Letters. 213:159-165
+
 
-
</br>
+
 
-
[5] Mark A. Schell, Pamela H. Brown, and Satanaryana Raju.(1990) Use of Saturation  Mutagenesis to Localize Probable Functional domains in the NahR protein, a LysR-type Transcription Activator. The Journal of Biological Chemistry. 265(7): 3384-3850.
+
 
-
</br>
+
 
-
[6] Angel Cebolla, Carolina Sousa, and Vı´ctor de Lorenzo.(1997) Effector Specificity Mutants of the Transcriptional Activator NahR of Naphthalene Degrading Pseudomonas Define Protein Sites Involved in Binding of Aromatic Inducers. The Journal of Biological Chemistry. 272(7):3986-3992
+
 
-
</br>
+
 
-
[7] M. A. Schell, and E. F. Poser.(1989) Demonstration, characterization, and mutational analysis of NahR protein binding to nah and sal promoters. J. Bacteriol. 171(2):837
+
 
-
</br>
+
-
[8] Jianzhong Huang and Mark A. Schell.(1991) In vivo interaction of the NahR Transcriptional Activator with its target sequences. The Journal of Biological Chemistry. 266(17):10830-10838
+
-
</br>
+
-
[9] Hoo Hwi Park, Hae Yong Lee, Woon Ki Lim, Hae Ja Shin. (2005) NahR: Effects of replacements at Asn 169 and Arg 248 on promoter binding and inducer recognition. Archives of Biochemistry and Biophysics. 434:67-74
+
</p>
</p>
 +
 +
<h1 id="XylSTableTitle"><b>Table 1. Comprehensive summary of XylS mutants and accompanied aromatics-sensing characteristics.</b></h1>
 +
<table border="1" id="XylSTable">
 +
<tr>
 +
  <th>Groups</th>
 +
  <th>Mutations</th>
 +
  <th>Expected Aromatics-sensing Profiles</th>
 +
</tr>
 +
<tr>
 +
  <td>Broader aromatics-sensing profiles with high induction ratio</td>
 +
  <td>Arg<sup>45</sup><Code>&rarr;</Code>Thr</td>
 +
  <td>SaA; 4-EtBzO; BzO; 2-MeBzO; 4-MeBzO</td>
 +
</tr>
 +
<tr>
 +
  <td>Constitutive <i>Pm</i> promoter activation</td>
 +
  <td>Trp<sup>88</sup><Code>&rarr;</Code>Leu</td>
 +
  <td>Not mentioned, this mutant causes constitutive expression of <i>Pm</i> promoter</td>
 +
</tr>
 +
<tr>
 +
  <td rowspan="5">Broader aromatics-sensing profiles with lower induction ratios</td>
 +
  <td>Arg<sup>152</sup><Code>&rarr;</Code>Gly</td>
 +
  <td>BzO; 2-MeBzO; 2-,3-ClBzO; 2-,3- and 4-MeOBzO</td>
 +
</tr>
 +
<tr>
 +
  <td>Arg<sup>41</sup><Code>&rarr;</Code>His</td>
 +
  <td>BzO; 3-MeBzO; 3-ClBzO; 3-BrBzO; 3-MeOBzO</td>
 +
</tr>
 +
<tr>
 +
  <td>Asp<sup>288</sup><Code>&rarr;</Code>Val</td>
 +
  <td>BzO; 3-MeBzO; 4-MeOBzO; 4-BrBzO; 2,4-MeBzO; 2,5-MeBzO; 3-ClBzO</td>
 +
</tr>
 +
<tr>
 +
  <td>Leu<sup>155</sup><Code>&rarr;</Code>Phe</td>
 +
  <td>2-MeBzO; 3-MeBzO; 4-MeBzO; 2,5-MeBzO, 4-ClBzO</td>
 +
</tr>
 +
<tr>
 +
  <td>Pro<sup>256</sup><Code>&rarr;</Code>Arg</td>
 +
  <td>BzO; 2-MeBzO; 3-MeBzO; 3,5-MeBzO; 3,5-ClBzO</td>
 +
</tr>
 +
</table>
  </div>
  </div>

Latest revision as of 18:13, 28 October 2013

Biosensors

XylS

Mechanism

Build Our Own Sensor!

XylS is an archetype transcriptional activator of AraC/XylS family, mined from the TOL plasmid pWW0 of the bacterium Pseudomonas putida. It is composed of a C-terminal domain (CTD) involved in DNA binding, and an N-terminal domain required for effector binding and protein dimerization[1]. XylS detect benzoate and its derivatives, mainly methyl and chlorine substitution at 2-, 3- carbon[2].

On TOL plasmid, the expression of XylS is initiated at two promoters: the strong promoter Ps1 that is σ54-dependent is positively regulated by XylR in the presence of toluene; Ps2, a σ70-dependent promoter, is constitutive but weaker[3].

The cognate promoter regulated by XylS, Pm, is σ54-dependent in Pseudomonas putida; meanwhile in E.coli, it is σ70-dependent[5]. It acts as the master regulator to control the ON/OFF expression of meta-operon on TOL plasmid pWW0[6]. In this meta-operon, xylXYZLTEGFJQKIH genes encode enzymes for the degradation of benzoate and its derivatives, producing intermediate metabolites as carbon sources (Fig.1).

XylS recognizes two 15-bp repeats (TGCA-N6-GGNTA) in Pm promoter, each featured by box A1/A2 (TGCA) and box B1/B2 (GGNTA), respectively. The arrangement of the two repeats is deposited as shown in Figure 2; the proximal XylS binding site overlaps the -35 box by 2 bp (the sequence for the binding of RNA polymerase)[4].



The process of Pm activation includes XylS-dependent DNA bending, XylS dimerization[4] and RNA polymerase (RNAP) recruitment. Binding of effector molecule (e.g., benzoate anion) to XylS N-terminal domain causes the conformational change at the C-terminal domain, which enables XylS protein to bind to upstream activated sequence of Pm promoter. This allows the formation of ready-to-use XylS dimer at Pm promoter. See Figure 3 for detailed explanation on the mechanism of transcription initiation by XylS.

Since one of the criteria of our Sensor Mining for aromatics-sensing transcriptional regulators is "well-studied", it can be expected that some mutants of XylS with novel aromatics-sensing characteristics have been identified in previous studies. As expected, according to the information we collected, there are three groups of XylS mutants. The first group, featured by thr45, includes a XylS mutant that exhibits broader aromatics-sensing profile than wild-type XylS, as well as higher level of transcription activation; this mutant are able to sense the ordinarily non-inducer 4-ethylbenzoate. The second group, featured by leu88 mutation, exhibits constitutive expression from the Pm promoter in the absence of inducers. The third group of mutants, including gly152, his41, val288, phe155, or arg256 mutations, recognizes new inducers, but generally with low induction fold.

See Table 1 for the comprehensive summary of XylS mutants and accompanied novel aromatics-sensing characteristics[2], which provides a rich repertoire for the synthetic biologists to customize the aromatics-sensing characteristics of XylS protein.

Peking iGEM team has adopted thr45 XylS mutant (for the convenient of reading, referred to as “XylS" below) to build a biosensor due to its broader aromatics-sensing profile with high induction ratio. As discussed in Biosensor Introduction, we constructed a Pm/XylS biosensor circuit using eGFP as reporter gene. XylS is constitutively expressed under the control of a constitutive promoter (Pc), and the expression of eGFP is positively regulated by XylS in the presence of inducers. In this circuit, the strength of Pc promoter and RBS sequence preceding XylS and eGFP were manipulated, respectively, to fine-tune the performance. Through ON/OFF test following Test Protocol 1, we found the biosensor circuit adopting a weak constitutive promoter, J23114, has the highest induction ratio when exposed to the inducers (Fig.4).

XylS biosensor treated with no inducer showed negligible basal expression of sfGFP. 20 compounds showed apparent activation effects with high induction ratios (higher than 20; Fig.5). They are BzO, 2-MeBzO, 3-MeBzO, 4-MeBzO, 2-FBzO, 4-FBzO, 2-ClBzO, 3-ClBzO, 4-ClBzO, 2-BrBzO, 4-BrBzO, 3-IBzO, 3-MeOBzO, SaA, 3-MeOSaA, 4-ClSaA, 5-ClSaA, 3-MeBAD, and 3-ClTOL (Click Here for the full names of aromatic compounds).

Moreover, we examined the dose-response curves of effective inducers for more details. Induction experiments using different sets of inducer concentrations (10 µM, 30µM, 100µM, 300µM and 1000µM) were performed following Test Protocol 1. The results showed that the dose-response curves appeared like Hill functions (Fig.6, Fig.7).

Checking the aromatics-sensing profile of XylS biosensor, we found that salicylic acid and its derivatives are also inducers of XylS which has not been reported in previous studies. The dose-response curves are illustrated in Figure 7.

These results altogether show that XylS biosensor has high induction ratio, low basal level and aromatics-specific sensing profile, which makes it to be a really high-performance component of our biosensor toolkit.

Figure 1. Regulatory circuits controlled by XylS and XylR on the TOL plasmid pWW0[3]. Symbols used in this figure: Squares, XylS; circles, XylR; open symbols, transcriptional regulator without aromatic effector binding; closed symbols, effector-bound transcription factors that is in active form. See the main text for the detailed explanation for the regulatory loops[4].

Figure 2. Sequence features of Pm promoter[4] The orange arrows indicate the two XylS binding sites (proximal and distal), each consisting of conserved A1/A2 and B1/B2 boxes. The -10 and -35 hexamers are in blue. A right-angled arrow indicates the transcription start site (+1).

Figure 3. Mechanism of transcription activation by XylS at Pm promoter. Step 1: Free DNA. The -10/-35 consensus boxes of σ70-dependent promoter and the two XylS binding sites (D: distal; and P: proximal) are highlighted. The bending angle is supposed to be 35°, centered at XylS proximal binding site. Step 2: A first XylS monomer is enabled to bind to Pm at the proximal site after binding with inducer at N terminal, shifting the bent center to the DNA sequence between the two XylS binding sites, increasing the bending angle to 50°. Step 3: This conformational change facilitates the binding of a second ready-to-use XylS monomer to the distal site, further increasing the DNA curvature to an overall value of 98°. Step 4: Contacts with RNAP, also probably with the σ-subunit, are established through the α-CTD of RNA polymerase, which dramatically facilitates the open complex formation and transcription initiation.

Figure 4.Using a library of constitutive promoters (Pc) to fine-tune the induction ratio of XylS biosensor. Horizontal axis stands for different XylS biosensor circuits with different Pc promoters. These Pc promoters are of different strength to control the expression of XylS. The relative expression strength of these constitutive promoters, J23113, J23109, J23114, J23105, J23106 are 21, 106, 256, 623, and 1185, respectively, according to the Partsregistry. Four kinds of aromatic compounds, namely BzO, 2-MxeBzO, 3-MeBzO and 4-MeBzO, shown with different color intensities, were tested following Test Protocol 1. Vertical axis represents the ON-OFF induction ratio. The Pm/XylS biosensor circuit adopting a weak Pc promoter J23114 performed best throughout the four inducers.

Figure 5. (a) The induction ratios of all 78 typical aromatic compounds in the ON/OFF test following Test Protocol 1. XylS biosensor could respond to 24 out of 78 aromatics with the induction ratio higher than 20, mainly benzoate, salicylic and their derivatives. (b) The aromatics-sensing profile of XylS biosensor is summarized from (a), highlighted in red in the aromatics spectrum. The structure formula of typical inducers are listed around the central spectrum, near their chemical formula.

Figure 6.Dose-response curves of XylS biosensor induced by benzoate and its derivatives. X-axis stands for concentration gradient of inducers at 10µM, 30µM, 100µM, 300µM and 1000µM. Different colors represent different kinds of inducers. Y-axis shows induction ratios. The induction ratio was calculated by dividing the fluorescence intensity of biosensor exposed to object inducers by the basal fluorescence intensity of the biosensor itself.

Figure 7. Dose-response curves of XylS biosensor induced by salicylate and its derivatives. X-axis stands for concentration gradient of inducers at 10µM, 30µM, 100µM, 300µM and 1000µM. Y-axis denotes induction ratios. Different colors denote different kinds of inducers. The induction ratio was calculated by dividing the fluorescence intensity of biosensor exposed to object inducers by the basal fluorescence intensity of the biosensor itself.

REFERENCES:
[1] Kaldalu, N., Toots, U., de Lorenzo, V., & Ustav, M. (2000). Functional domains of the TOL plasmid transcription factor XylS. Journal of bacteriology, 182(4), 1118-1126.
[2] Ramos, J. L., Michan, C., Rojo, F., Dwyer, D., & Timmis, K. (1990). Signal-regulator interactions, genetic analysis of the effector binding site of xyls, the benzoate-activated positive regulator of Pseudomonas TOL plasmid meta-cleavage pathway operon. Journal of molecular biology, 211(2), 373-382.
[3] Ramos, J. L., Marqués, S., & Timmis, K. N. (1997). Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Annual Reviews in Microbiology, 51(1), 341-373.
[4] Domínguez-Cuevas, P., Marín, P., Busby, S., Ramos, J. L., & Marqués, S. (2008). Roles of effectors in XylS-dependent transcription activation: intramolecular domain derepression and DNA binding. Journal of bacteriology, 190(9), 3118-3128.
[5] Gerischer, U. (2002). Specific and global regulation of genes associated with the degradation of aromatic compounds in bacteria. Journal of molecular microbiology and biotechnology, 4(2), 111-122.
[6] Kaldalu, N., Mandel, T., & Ustav, M. (1996). TOL plasmid transcription factor XylS binds specifically to the Pm operator sequence. Molecular microbiology,20(3), 569-579.
[7] Domínguez-Cuevas, P., Ramos, J. L., & Marqués, S. (2010). Sequential XylS-CTD binding to the Pm promoter induces DNA bending prior to activation. Journal of bacteriology, 192(11), 2682-2690.

Table 1. Comprehensive summary of XylS mutants and accompanied aromatics-sensing characteristics.

Groups Mutations Expected Aromatics-sensing Profiles
Broader aromatics-sensing profiles with high induction ratio Arg45Thr SaA; 4-EtBzO; BzO; 2-MeBzO; 4-MeBzO
Constitutive Pm promoter activation Trp88Leu Not mentioned, this mutant causes constitutive expression of Pm promoter
Broader aromatics-sensing profiles with lower induction ratios Arg152Gly BzO; 2-MeBzO; 2-,3-ClBzO; 2-,3- and 4-MeOBzO
Arg41His BzO; 3-MeBzO; 3-ClBzO; 3-BrBzO; 3-MeOBzO
Asp288Val BzO; 3-MeBzO; 4-MeOBzO; 4-BrBzO; 2,4-MeBzO; 2,5-MeBzO; 3-ClBzO
Leu155Phe 2-MeBzO; 3-MeBzO; 4-MeBzO; 2,5-MeBzO, 4-ClBzO
Pro256Arg BzO; 2-MeBzO; 3-MeBzO; 3,5-MeBzO; 3,5-ClBzO